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Abstract
Conditional molecular generation, aiming to generate 2D &
3D molecules that satisfy given properties, has achieved re-
markable progress, thanks to the advances in deep generative
models such as graph diffusion. However, existing methods
generally assume that the given conditions for training and
testing are consistent, failing to handle the realistic challenge
when there exist distribution shifts between training and test-
ing conditions. Invariant learning is a mainstream paradigm
for addressing distribution shifts, but fusing invariant learning
principles with conditional molecular generation faces three
core challenges: (1) existing invariant learning methods fo-
cus on discriminative tasks and cannot be directly adapted to
molecule generative tasks; (2) how to distinguish between in-
variant subgraph and variant subgraph of a molecule graph,
which is treated as an integrated input; (3) how to fuse invari-
ant subgraphs, variant subgraphs, and property conditions for
effective generation. To tackle these challenges, we propose
Invariant Conditional MOLecular generation (IC-MOL), a
framework that combines invariant learning with graph dif-
fusion to improve the generalization ability of conditional
molecular generation under distribution shifts. Specifically,
we first disentangle molecular graphs into invariant and vari-
ant subgraphs while maintaining SE(3) equivariance, an im-
portant inductive bias for molecular generation. On this ba-
sis, we further design a two-phase graph diffusion generation
model. In the first phase, we generate an invariant molecular
consistent with the target property. In the second phase, we
propose a cross-attention mechanism to fuse variant subgraph
representations and property conditions to guide the genera-
tion of complete molecules while maintaining property align-
ment. Extensive experiments on the benchmark dataset show
that IC-MOL consistently outperforms state-of-the-art base-
lines across six property conditions under distribution shifts.

1 Introduction
Conditional molecular generation, i.e., designing novel
molecules with desired chemical properties, is valuable for
accelerating drug discovery and material science (Du et al.
2024). Recent advances in deep generative models have sig-
nificantly advanced conditional molecular generation, with
representative approaches including Autoregressive models
(ARs) (Goldman, Li, and Coley 2024; Luo and Ji 2022),
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Figure 1: An example of distribution shifts for conditions,
leading to generalization challenges for existing methods.

Normalizing Flows (NFs) (Zang and Wang 2020; Luo, Yan,
and Ji 2021) and Diffusion models (DMs) (Feng et al. 2025;
Liu et al. 2024; Gu et al. 2024). These models have shown
remarkable success in generating novel 2D & 3D molecules
while satisfying given property constraints. Despite their
significant advances, most existing methods rely on the ideal
assumption that the given conditions for training and test-
ing are identically distributed. However, in real-world appli-
cations, target property conditions can significantly diverge
from those during training, leading to distribution shifts.
For instance, in the widely use QM9 dataset (Ramakrishnan
et al. 2014), the heat capacity (Cv) of the training molecules
lies almost entirely in the range 20−50 cal mol−1K−1, but
it is often necessary to seek a target crystal phase with Cv >
60 cal mol−1K−1 for differential catalytic materials (Shahin
et al. 2024). As shown in Figure 1, existing methods do
not account for such distribution shifts and fail to gener-
ate molecules that meet out-of-distribution (OOD) proper-
ties (Huang et al. 2023a,b; Mercatali et al. 2024). Therefore,
how to design molecular generation methods with OOD
generalization abilities has become an urgent requirement
for advancing conditional molecular generation, but remains
largely unexplored in the literature.

To tackle this problem, we draw inspiration from existing
findings that molecular properties are typically highly cor-
related with certain structure known as invariant subgraphs
within molecules, which remain stable across different en-



vironments (Klekota and Roth 2008; Phanus-Umporn et al.
2018; Zhu et al. 2020; Kao et al. 2022). By learning and
preserving such invariant subgraphs for distinct properties,
the model could potentially mitigate its reliance on specific
distributions. Even when property conditions shift, it can
still generate molecules meeting the required criteria based
on invariant subgraphs. From another perspective, invariant
learning has emerged as a mainstream approach for discrim-
inative graph OOD problems, as it can identify causal fea-
tures and remove spurious correlation (Li et al. 2022). These
motivate us to utilize invariant learning principles to han-
dle distribution shifts of conditional molecular generation,
which face the following three challenges.

First, existing graph invariant learning methods (Li et al.
2022; Wu et al. 2022; Chen et al. 2023) are primarily de-
signed for discriminative tasks such as node and graph clas-
sification. However, molecular conditional generation fur-
ther requires that the generated structures are stable, e.g., it
should remain equivariant to rotation and translation. Sec-
ond, existing generative models, such as graph diffusion
methods, take molecular graphs as an integrated input. How
to distinguish between invariant subgraphs, which determine
target properties, and variant subgraphs, which serve as en-
vironmental factors such as scaffold, remains unexplored in
deep generative models. Lastly, even with decoupled sub-
graphs, existing methods still lack effective mechanisms to
fuse invariant subgraphs, variant subgraphs, and property
conditions in the generation process, making it challenging
to generate molecules that are structurally valid and property
compliant under distribution shifts.

To tackle these challenges, we propose Invariant
Conditional MOLecular generation (IC-MOL), a novel
framework that combines invariant learning with graph dif-
fusion for 2D & 3D molecular generation under distribution
shift. Specifically, we first disentangle molecular graphs into
invariant and variant subgraphs through a subgraph predictor
trained by using given properties as pseudo-labels. Mean-
while, we adopt E(3)-equivariant GNN (E3GNN) (Satorras,
Hoogeboom, and Welling 2021) to maintain SE(3) equiv-
ariance, an important inductive bias for molecular genera-
tion that ensures the consistency of 3D molecular geomet-
ric structures under spatial transformations. Then, we de-
sign a two-phase graph diffusion generation model. In the
first phase, we focus on invariant molecule generation un-
der the target property conditions. This step is designed to
avoid interference from spurious correlations, as it directly
leverages the invariant subgraphs. In the second phase, we
refine molecules based on the generated invariant molecule
by proposing a cross-attention mechanism that fuses variant
subgraphs representations and property conditions to gener-
ate structurally reasonable 2D & 3D molecules that meet the
target properties. We further design a structural consistency
loss to ensure the stable preservation of the invariant struc-
ture during the whole generation.

Experimental results on benchmark dataset under distri-
bution shift settings demonstrate that our method consis-
tently and significantly outperforms state-of-the-art base-
lines in terms of structural validity and generalization ability
across six property conditions.

Our main contributions are summarized as follows:
• We study the problem of conditional molecular genera-

tion under distribution shifts. To the best of our knowl-
edge, this is the first work to tackle this problem.

• We propose a novel framework IC-MOL by integrating
invariant learning with graph diffusion. Our method dis-
entangles invariant and variant subgraphs while main-
taining SE(3) equivariance, and adopts a two-phase con-
ditional diffusion generation model with a cross-attention
mechanism which can generate molecules with structures
that meet target properties under distribution shifts.

• Experimental results demonstrate that our method con-
sistently achieves superior performance across six prop-
erty conditions under distribution shifts.

2 Related Work
Graph Invariant Learning for OOD Generalization. To
tackle the distribution shift problem of graph data, several
recent works have advanced graph invariant learning for
OOD generalization. For example, GIL (Li et al. 2022) ac-
quires cross-environment invariant subgraphs through the
joint optimization of three modules. DIR (Wu et al. 2022)
employs subgraph generation together with distributional in-
tervention under implicit environment partitions to discover
invariant graph structures. CIGA (Chen et al. 2022) selects
via an information-theoretic objective that maximally pre-
serves invariant intra-class information to guarantee OOD
generalization under both structural and attribute shifts.
GALA (Chen et al. 2023) extracts maximally invariant sub-
graphs via an environment assistant model and its proxy pre-
dictions. MoleOOD (Li et al. 2022) proposes a molecule
representation learning framework to improve model robust-
ness under distribution shifts. Despite the rich research on
OOD generalization in graph representation learning, these
methods are confined to discriminative tasks and cannot be
directly applied to molecule generative tasks. To the best of
our knowledge, our method is the first to combine invariant
learning with 2D & 3D molecular generation.
Molecular Conditional Generation. Recently, there have
been several advances in molecular generation in 2D &
3D joint space. JODO (Huang et al. 2023a) treats the 2D
topological and 3D geometric structure as continuous vari-
ables in a diffusion-based framework. Twigs (Mercatali et al.
2024) propose loop guidance to effectively coordinate the
information flow between the trunk process and the steam
process during the sampling process.

Very few recent works have specifically targeted gener-
alization of molecular generation under distribution shifts.
Lee et al. (Lee, Jo, and Hwang 2023) introduced MOOD,
a score-based generative framework that incorporates OOD
control directly into the stochastic differential equation
(SDE). Klarner et al. (Klarner et al. 2024) proposed context-
guided diffusion, which leverages unlabeled molecular data
and regularizes diffusion trajectories via smoothness con-
straints. Although these methods have achieved initial
progress, they lack a foundation in invariant learning, a crit-
ical limitation for capturing stable structure-property rela-
tionships under OOD conditions.



3 Problem Formulation
We denote a (3D) molecule as a geometric graph G =
(A,x,h), where x ∈ RN×3 denotes the 3D coordinates
of N atoms, h ∈ RN×d1 represents atom features includ-
ing atom types and formal charges, A ∈ RN×N×d2 encodes
pairwise bond information, where each channel corresponds
to a specific bond-level property such as connectivity, aro-
maticity, or bond multiplicity, and d1 and d2 are the dimen-
sionality. We assume A is symmetric and has zero diagonals,
as molecular bonds are undirected and have no self-loops.
As a result, we only consider the lower triangle of A, which
can be linearly transformed as A ∈ RN(N−1)/2×d2 .

Problem Formulation 1 Given a training dataset
Dtrain = {(Gi, yi)}Ni=1 drawn from a joint distribu-
tion ptrain(G, y), conditional molecular generation aims to
generate molecules Gj ∼ pθ(G | yj), where yj ∼ ptest(y)
is the test condition such that the generated molecule is
both chemically valid and aligned with the desired property
yj . Besides, distributional shifts indicate that the testing
property distribution ptest(y) satisfying:

supp(ptest(y)) ̸⊆ supp(ptrain(y)), (1)

i.e., the test property conditions y can fall outside the sup-
port of the training condition.

Existing conditional generation models do not consider
distribution shifts. In this paper, we tackle this problem from
the invariance learning perspective. First, we introduce the
following assumption.

Assumption 1 We assume each molecule G can be decom-
posed into two disjoint subgraphs:
• An invariant subgraph Ginv = (Ainv,xinv,hinv), which

contains the structural components that causally deter-
mine the target property y.

• A variant subgraph Gvar = G \ Ginv, which may vary
across environments and does not causally affect y.

Following invariant learning literature (Chen et al. 2023; Wu
et al. 2022), we posit the existence of a Structural Causal
Model (SCM) (Pearl 2009) and the property y satisfies:

y = fy(Ginv) and y ⊥⊥ Gvar | Ginv, (2)

where y ⊥⊥ Gvar | Ginv indicates that Ginv shields y from
the influence of Gvar. fy : Ginv → R denotes the mapping
function that takes the invariant subgraph Ginv as input and
produces the target property y. This implies that Ginv acts
as a sufficient statistic for predicting y. Notice that though
Gvar does not influence target molecule properties, it is still
an indispensable part that needs to be properly generated to
form chemically valid molecules.

4 Method
In this section, we first present the overall architecture of
the proposed IC-MOL model. Then, we describe the core
components of IC-MOL: (1) equivariant subgraph disentan-
glement; (2) two-phase graph diffusion generation. Lastly,
we describe the loss functions and the training process. An
overall framework is shown in Figure 2.

4.1 The Overall Architecture
To tackle distribution shifts, IC-MOL consists of two
key components: equivariant subgraph disentanglement and
two-phase graph diffusion generation. Specifically, we first
combine SE(3) equivariance with a representative graph in-
variant learning method GALA (Chen et al. 2023) to achieve
the disentanglement of invariant subgraph Ginv and variant
subgraph Gvar from the observed molecular graph. Then,
we propose a two-phase graph diffusion generation model.
In the first phase, the extracted invariant subgraph Ginv is
fed into a conditional diffusion model to generate a new in-
variant molecular aligned with the target property condition
y. In the second phase, we generate the complete molec-
ular structure. We encode the Gvar via an E3GNN to ob-
tain a latent representation zs, and through a cross-attention
mechanism to fuse variant subgraph representations with the
property condition y. The fused context serves as the condi-
tional input for the second phase, guiding the completion
of the full molecular graph. Finally, a structural consistency
loss between the generated invariant core and the completed
molecule enforces preservation of Ginv while permitting
flexible variation in Gvar to enhance structural diversity.

4.2 Equivariant Subgraph Disentanglement
A key challenge in 3D molecular generation under distribu-
tion shifts is to identify and preserve the invariant subgraph
across environments while maintaining SE(3) equivariance.
Inspired by the GALA framework (Chen et al. 2023) and
Assumption 1, we decompose molecule G into an invariant
subgraph Ginv that determines the molecular property y, and
a variant subgraph Gvar that may be spuriously correlated
with y, while the decomposition is equivariant to SE(3).

Under distribution shifts, standard empirical risk mini-
mization (ERM) often fails to generalize, as it tends to over-
fit to spurious correlations present in the training data. In
particular, when

H(Gvar|y) < H(Ginv|y), (3)

where H(·, ·) is the Shannon entropy, the model tends to
rely on the variant subgraph Gvar for predictions. To mit-
igate this, we adopt environment-assisted subgraph selec-
tion based on the following assumptions (Chen et al. 2023):
for any variant subgraph Gvar, there exist two environments
such that p(y|Gvar) differs across them, while p(y|Ginv) re-
mains unchanged. With this assumption, we can partition the
training data into two subsets in virtual environments Ev:

1. Ĝp
inv: Sampled from estimated invariant subgraphs {Ĝp}

dominated by spurious correlations. Here, Gvar retains a
strong correlation with y, and p(y|Gvar) stays stable.

2. Ĝn
inv: Sampled from estimated invariant subgraphs {Ĝn}

where spurious correlations break down. Here, Gvar’s
correlation with y weakens, and P (y|Gvar) varies across
environments.

Note that only Ginv maintains stable relationship with y
across both subsets. Thus, we select Ginv by maximizing
conditional mutual information:

Ginv ∈ argmax
Ĝp

inv

I(Ĝp
inv; Ĝ

n
inv|y), (4)



Varia
nt

 Molecule

Variant Molecule

Invariant Molecule

Invariant Molecule Generation Phase 
...

Complete Molecule Generation Phase 

Invariant Molecule

ℒpred

(a) Equivariant Subgraph Disentanglement

C
H

N
F

O

Atom Feature

3D Coordinate

Node Representation

Invariant

Variant  Representation

Property 
Prediction Head

(b) Two-phase Graph Diffusion Generation

...

＋noise

�inv �inv...�inv,T �inv,t ...

＋noise
�inv,�’ ... �...

Complete Molecule

E3GNN
� = 1

···
E3GNN

� = 1
···

E3GNN
� = 1

···

�inv,�’

�� = 35     Condition  

� = (�, �, ℎ)

�var

Generated 
Invariant Molecule

� = 2

Condition 
e.g. �� = 35  

Variant Representation

×
V
K

Q Context c

... ...

Figure 2: The framework of IC-MOL. (a) Molecules are disentangled into invariant and variant subgraphs predictor while
maintaining SE(3) equivariance, which is trained using given properties as pseudo-labels for subgraph disentanglement. (b)
The two-phase graph diffusion generation. In the first phase, our method focuses on generating invariant subgraphs under target
property constraints by directly leveraging invariant subgraphs. Then, we generate the complete molecule based on the invariant
molecule using cross-attention, which fuses variant subgraph representations and property conditions.

where I(·, ·) measures the mutual information. This method
ensures capturing invariant and property-relevant informa-
tion even as Ginv varies across environments.

To adapt to 3D molecular graphs, we adopt an
E3GNN (Satorras, Hoogeboom, and Welling 2021) as the
backbone architecture in our framework. This ensures sub-
graph features remain consistent under molecular rotation-
s/translations, which is a key requirement for 3D confor-
mation generalization. We first leverage E3GNN to extract
atom representation. Specifically, the inner product of atom
representation is computed and subsequently fed into the
sigmoid function to generate edge masks, which quantify the
importance of each edge. Edges with mask values exceed-
ing a predefined threshold are designated as components of
the invariant subgraph Ginv, whereas those with mask val-
ues below the threshold are categorized into the variant sub-
graph Gvar, which can be defined as Gvar = G \Ginv. We
encode them using separate E3GNN to capture their distinct
characteristics:

zinv = E3GNNinv(Ginv), zvar = E3GNNvar(Gvar), (5)

where zinv, zvar denotes node-level representations of in-
variant and variant subgraphs, respectively. We aggregate
zinv as invariant subgraph-level representation hinv via a
global pooling operator. Then we introduce an auxiliary pre-
diction head Φinv that takes the pooled invariant subgraph
representation hinv as input and predicts the target property
value of the 3D molecule. Formally,

hinv = Pooling
(
zinv

)
, ŷinv = Φinv

(
hinv

)
, (6)

where ŷinv is the predicted property value, Pooling(·) rep-
resents the global pooling. We train the property prediction
head with a mean squared error loss:

Lpred =
1

N

∑N
i=1

(
ŷinv,i − yi

)2
, (7)

where N denotes the total number of training molecules.
This encourages capturing the core causal factors that de-
termine the true property y, which can be applied in the sub-
sequent molecular generation process.

4.3 Two-phase Graph Diffusion Generation
Based on equivariant subgraph disentanglement, we pro-
pose a two-phase graph diffusion generation model to gen-
erate molecules that conform to OOD generalization. To
simultaneously generate topological structures and 3D ge-
ometric conformations, this two-phase framework oper-
ates in a continuous product space combining 2D bond
connectivity and 3D atomic coordinates. Specifically, we
treat both the discrete bond connectivity and the continu-
ous atomic coordinates as continuous variables and model
their joint distribution using a SDE framework, and employ
the SE(3)-equivariant Diffusion Graph Transformer (DGT)
backbone (Huang et al. 2023a).

Invariant Molecule Generation Phase In the first phase,
we generate an invariant subgraph Ĝinv aligned with the
target property y. These subgraphs serve as the core of the
molecule, ensuring that property-relevant structures are pre-
served across distribution shifts. We define invariant sub-
graph as Ginv = (Ainv,xinv,hinv) and formulate the gen-



eration of Ginv as a continuous-time denoising diffusion
process in the product space RNc(Nc−1)/2×d2 × RNc×3 ×
RNc×d1 , where Nc denotes the number of atoms in Ginv.
The forward SDE with t ∈ [0, T ] is

dGinv,t = f(t)Ginv,t dt+ g(t) d(winv,A,winv,x,winv,h),
(8)

where winv,A, winv,x, winv,h denote standard Wiener pro-
cess on the bond, coordinate, and feature spaces, respec-
tively, and f(t) and g(t) are the drift coefficient and the
diffusion coefficient for the diffusion process. As t → T ,
Ginv,t gradually approaches an isotropic Gaussian distribu-
tion, which serves as the prior distribution for sampling dur-
ing the generative process.

To enable the reverse denoising process from time T to 0,
we learn a reverse-time SDE that transforms the noisy data
into the original invariant subgraph, which is formulated as:

dGinv,t =
[
f(t)− g2(t)∇Ginv,t

log qt(Ginv,t|y)
]
dt

+ g(t) d(w̄inv,A, w̄inv,x, w̄inv,h),
(9)

where w̄inv,A, w̄inv,x, w̄inv,h are the reverse-time stan-
dard Wiener processes, ∇Ginv,t log qt(Ginv,t|y) denotes the
score function of the noisy invariant subgraph at time t con-
ditioned on the property y.

To parameterize the score function and generate high-
fidelity invariant subgraphs, we adopt the data prediction
model in (Huang et al. 2023a) instead of the noise predic-
tion model. Leveraging self-conditioning, this model takes
four inputs: the noisy invariant subgraph Ginv,t at time t,
the previously estimated invariant subgraph Ĝinv,0 from the
last sampling step, and the noise level log(α2

t /σ
2
t ) which de-

notes the signal-to-noise ratio at time t, and the given prop-
erty y. Formally, the data prediction model is:

dθ1(Ginv,t, Ĝinv,0, log(α
2
t /σ

2
t ), y). (10)

Unlike standard denoising models that recover data di-
rectly from noise, our method refines the previous predic-
tion Ĝinv,0. We implement dθ1 with DGT (Huang et al.
2023a), which leverages relational attention for node and
edge interaction to ensure invariant subgraph topologi-
cal and geometric consistency. The data prediction model
dθ1(Ginv,t, Ĝinv,0, log(α

2
t /σ

2
t ), y) produces three outputs

denoted as (dA
θ1

, dx
θ1

, dh
θ1

), and is trained by by minimizing
the mean squared error:

Linv =min
θ

Et{
√

αt

σt
EGinv,0,yEGinv,t|Ginv,0

[||dA
θ1 −A0||22

+ λ1||dx
θ1 − x̂0||22 + ||dh

θ1 − h0||22]} ,
(11)

where λ1 is the loss weights.

Complete Molecule Generation Phase In the second
phase, we generate the complete molecule Ĝ based on Ĝinv

by a cross-attention mechanism. Specifically, our cross-
attention fuses the variant subgraph representations zvar and
the property condition y into a unified conditional context
vector c, which guides the diffusion model toward the de-
sired structural and chemical space.

Formally, the complete molecule is represented as Ĝ =

(Â, x̂, ĥ). The input of the second second phase is the gen-
erated invariant molecule Ĝinv from the first phase and a
conditional context vector c. The data prediction model for
molecule completion is defined as:

dθ2(Ĝinv,t, Ĝ0, log(α
2
t /σ

2
t ), c). (12)

The model is trained with a similar loss formulation as in the
first phase, formulated as follows:

Lfull =min
θ

Et{
√

αt

σt
EG0,cEGinv,t|G0

[||dA
θ2 −A0||22

+ λ2||dx
θ2 − x̂0||22 + ||dh

θ2 − h0||22]} ,

(13)

where λ2 is the loss weights. In particular, we prove that
the two-phase graph diffusion satisfies SE(3)-invariant, the
proof is provided in Appendix. Next, we elaborate on the
cross-attention to learn the context vector c.

Cross-Attention We propose a cross-attention to guide
the second phase diffusion model in generating chemically
valid molecules. By fusing variant subgraph representations
zvar and property condition y into a unified context c, we en-
able effective use of this information for generation. Since
it is impossible to find invariant subgraphs or variant sub-
graphs in the sampling process under realistic conditions,
we randomly drop the variant subgraph representations dur-
ing training to improve the quality of the generated samples:

z′
var = m⊙ zvar, m ∼ Bernoulli(1− p), (14)

where m is a stochastic binary mask, ⊙ denotes element-
wise multiplication and p denotes dropout probability. Then,
both z′

var and y are projected into a shared latent space via
linear transformations:

q = Wqz
′
var, k = Wky, v = Wvy, (15)

where Wq,Wk,Wv are parameters and q,k,v ∈ Rd are
corresponding query, key, and value vectors. The cross-
attention mechanism computes the attention score and the
fused representation as:

zf = softmax
(
q⊤k√

d

)
· v. (16)

The final fused context vector c is obtained via an output
projection using a linear layer:

c = Wo(zf ), (17)
where Wo is the parameter.

Structural Consistency Loss To ensure that the critical
causal structure discovered in the first stage is preserved
during the full molecule generation, we introduce a struc-
ture consistency loss. Specifically, given the predicted full
molecule Ĝ from the second-stage diffusion model, we ex-
tract the substructure corresponding to the invariant sub-
graph region Ĝ′

inv = (Â′
inv, x̂

′
inv, ĥ

′
inv) and enforce it to

match the invariant graph output Ĝinv generated in the first
stage as follows:

Lcons =
∥∥∥Âinv − Â′

inv

∥∥∥2

F
+

∥∥x̂inv − x̂′
inv

∥∥2

F
+

∥∥∥ĥinv − ĥ′
inv

∥∥∥2

F
,

(18)

where ∥·∥F denotes the Frobenius norm.



Overall Training Loss The overall loss combines all com-
ponents to balance prediction accuracy, generation quality,
and structural consistency:

Ltotal = Lpred + Linv + Lfull + Lcons. (19)

5 Experimental Settings
In this section, we evaluate our method by comparing it
with state-of-the-art methods. We first introduce the exper-
imental settings. Then, we present the results on condi-
tional molecule generation with targeted properties. Lastly,
we report analyses of our method. We release the code at
https://github.com/selena200002/IC-MOL.

5.1 Experimental Settings
Datasets. We conduct experiments on the QM9 dataset (Ra-
makrishnan et al. 2014), which contains molecules up to 9
heavy atoms. It provides comprehensive 2D bonding graphs,
3D conformations, and molecular property. For the condi-
tional generation task, we focus on six quantum properties,
namely the heat capacity Cv , the dipole moment µ, the po-
larizability α, the highest occupied molecular orbital en-
ergy ϵHOMO, the lowest unoccupied molecular orbital en-
ergy ϵLUMO, and the HOMO-LUMO gap ∆ϵ.

To simulate the distribution shifts in the real world, we
split the dataset based on target properties, i.e., we sort sam-
ples by the value of each property and split them into train-
ing, validation, and test sets based on the sorted results. We
adopt two common distribution shifts:

• Condition shift S→L: The training set contains only
small property values, whereas the test set contains only
large property values.

• Condition shift L→S: The training set contains only
large property values, whereas the test set contains only
small property values.

More experimental details are provided in Appendix.
Baselines. We compare IC-MOL with two state-of-the-art
conditional molecular generation methods: JODO (Huang
et al. 2023a) and Twigs (Mercatali et al. 2024). Besides their
original methods, we also combine them with DRO (Sagawa
et al. 2019), which are specifically designed to handle OOD
issues, as additional baselines. Appendix presents the de-
tailed information of the baselines.
Metrics. We generate 10,000 molecules for each evaluation
and report the Mean Average Error (MAE) between the tar-
get property values and those for the generated samples.
We further assess OOD generation quality from both the
2D graph and 3D geometry perspectives. We evaluate va-
lidity (Val), atom stability (AtomStb), and molecule stabil-
ity (MolStb) on 3D geometry, and validity (Val), similarity
to the nearest neighbor (SNN), fragment similarity (Frag)
and scaffold similarity (Scaf) on the 2D graph. Appendix
presents more detailed information.
Implementation Details. We train our model for a total
of 300k iterations, with the AdamW optimizer (β1 = 0.9,
weight decay = 1e−2), the learning rate of 1e−3 and a batch
size of 128. We set λ1, λ2 = 0.25. More implementation de-
tails are provided in Appendix.

Method Cv µ α ∆ϵ ϵHOMO ϵLUMO

JODO 1.235 1.570 8.666 1380 612.6 1617
JODO+DRO 1.594 1.586 8.698 1380 613.4 1618
Twigs 1.313 1.586 8.995 1378 613.0 1699
Twigs+DRO 1.562 1.591 8.683 1379 614.9 1625

IC-MOL 1.209 1.550 8.531 1375 611.4 1602

Table 1: MAE of predicted single property under condition
shift S→L. The best results are in bold.

Method Cv µ α ∆ϵ ϵHOMO ϵLUMO

JODO 2.318 1.742 7.650 1533 585.3 1617
JODO+DRO 2.361 1.742 7.740 1544 584.1 1620
Twigs 2.419 1.775 7.834 1574 589.3 1726
Twigs+DRO 2.305 1.779 7.710 1562 588.0 1687

IC-MOL 2.298 1.741 7.603 1520 583.6 1601

Table 2: MAE of predicted single property under condition
shift L→S. The best results are in bold.

5.2 Comparisons with State-of-the-art
The MAE results of condition shift S→L. Under this
OOD setting, the MAE between the properties of generated
molecules and the target is shown in Table 1. Our model
outperforms other methods across all six properties. For in-
stance, the MAE of Cv is over 2.1% lower than that of the
second-best method. This demonstrates our model generates
molecules with properties more closely aligned with ground
truth, validating its ability to mitigate train-test distribution
discrepancies.
The MAE results of condition shift L→S. Further, we re-
port the MAE results under condition shift L→S. From Ta-
ble 2, our method consistently achieves the lowest MAE
across all six property conditions, outperforming state-
of-the-art methods. This demonstrates that our approach
achieves superior control over generated molecular proper-
ties under diverse OOD conditions, highlighting its robust
generalization and stability across distribution shifts.
Other metrics under condition shift S→L. We also
present 3D metrics comparisons in Table 3 under condi-
tion shift S→L. Our method outperforms state-of-the-art ap-
proaches, achieving the highest atom stability and validity
across six properties, and the top molecule stability in four.
Coupled with its superior validity and atomic stability, these
results demonstrate that our method produces more general-
ization and reliable molecules under OOD conditions.

The quantitative comparisons of 2D molecule generation
are shown in Table 4. Our proposed IC-MOL consistently
outperforms all baseline models on nearly all evaluation
metrics of the QM9 dataset, including the validity and Frag
of 2D molecular graphs. The overall evaluation results show
that IC-MOL achieves the best comprehensive performance
in terms of the chemical validity, structural rationality of
generated molecules, and consistency with real molecules.
More quantitative comparisons of our method are provided
in the Appendix.



Metrics Val ↑ AtomStb ↑ MolStb ↑
Condition Cv µ ∆ε εHOMO α εLUMO Cv µ ∆ε εHOMO α εLUMO Cv µ ∆ε εHOMO α εLUMO

JODO 0.947 0.959 0.922 0.946 0.947 0.954 0.987 0.991 0.982 0.990 0.989 0.978 0.879 0.918 0.853 0.911 0.914 0.839
JODO+DRO 0.920 0.942 0.896 0.944 0.940 0.878 0.975 0.989 0.980 0.990 0.989 0.975 0.783 0.885 0.822 0.907 0.887 0.812
Twigs 0.921 0.930 0.894 0.897 0.884 0.928 0.983 0.989 0.979 0.981 0.980 0.879 0.858 0.879 0.804 0.812 0.821 0.844
Twigs+DRO 0.865 0.925 0.901 0.871 0.950 0.905 0.970 0.986 0.983 0.944 0.989 0.977 0.736 0.831 0.738 0.509 0.907 0.806
IC-MOL 0.953 0.985 0.925 0.968 0.969 0.954 0.989 0.992 0.987 0.990 0.990 0.989 0.875 0.896 0.899 0.985 0.920 0.851

Table 3: The results of 3D molecule generation under the condition shift S→L setting. The best results are in bold.

Metrics Val ↑ SNN ↑
Condition Cv µ ∆ε εHOMO α εLUMO Cv µ ∆ε εHOMO α εLUMO

JODO 0.986 0.985 0.992 0.989 0.983 0.983 0.337 0.428 0.296 0.354 0.389 0.362
JODO+DRO 0.984 0.985 0.990 0.991 0.980 0.981 0.331 0.428 0.302 0.354 0.390 0.241
Twigs 0.987 0.984 0.983 0.971 0.982 0.982 0.342 0.408 0.310 0.349 0.394 0.355
Twigs+DRO 0.977 0.980 0.416 0.871 0.983 0.984 0.337 0.410 0.305 0.324 0.390 0.244
IC-MOL 0.990 0.988 0.985 0.991 0.985 0.987 0.331 0.438 0.325 0.350 0.407 0.389

Metrics Frag ↑ Scaf ↑
Condition Cv µ ∆ε εHOMO α εLUMO Cv µ ∆ε εHOMO α εLUMO

JODO 0.865 0.796 0.837 0.838 0.740 0.512 0.523 0.776 0.450 0.221 0.614 0.526
JODO+DRO 0.828 0.786 0.817 0.837 0.714 0.474 0.585 0.782 0.484 0.208 0.601 0.524
Twigs 0.874 0.782 0.820 0.839 0.743 0.492 0.556 0.713 0.533 0.200 0.608 0.501
Twigs+DRO 0.858 0.773 0.825 0.821 0.713 0.557 0.676 0.725 0.530 0.208 0.592 0.546
IC-MOL 0.890 0.793 0.839 0.841 0.793 0.561 0.685 0.786 0.455 0.231 0.648 0.455

Table 4: The results of 2D molecule generation under the condition shift S→L setting. The best results are in bold.

Metrics-3D/MAE Val↑ AtomStb↑ MolStb↑ MAE↓
IC-MOL 0.968 0.990 0.985 611.4
- Lcons 0.968 0.978 0.941 613.6
- cross-attention 0.943 0.975 0.966 615.8
- the second phase 0.953 0.986 0.826 612.4
- the first phase 0.946 0.990 0.911 612.6

Metrics-2D Val↑ SNN↑ Frag↑ Scaf↑
IC-MOL 0.991 0.350 0.841 0.231
- Lcons 0.973 0.349 0.812 0.225
- cross-attention 0.965 0.344 0.817 0.216
- the second phase 0.987 0.355 0.841 0.212
- the first phase 0.989 0.354 0.838 0.221

Table 5: Ablation studies on IC-MOL under the condition
shift S→L regarding the results of predicted ϵHOMO proper-
ties. The best results are in bold.

5.3 Ablation Studies
We perform ablation experiments by removing Lcons, cross-
attention, two-phase graph diffusion generation in IC-MOL
to verify the designs of our method. The quantitative results
are shown in Table 5. For two-phase graph diffusion gener-
ation, we remove each of its phase, denoted as the second
phase and the first phase, respectively. It is worth noting that
removing the first phase is equivalent to JODO.

By removing cross-attention, various metrics decrease,
indicating that cross-attention can integrate information

from the variant subgraph and help generate more realistic
molecules. When the second phase is removed, the molecu-
lar stability decreases significantly, indicating that our sec-
ond diffusion model plays a decisive role in refining the
molecule. When Lcons is removed, the Frag metrics de-
creases, indicating that our proposed Lcons can ensure the
structure of the invariant subgraph.

6 Conclusion

In this paper, we study the critical challenge of generaliza-
tion ability of conditional molecular generation under distri-
bution shifts. We propose IC-MOL, a novel framework that
combines invariant learning with graph diffusion to enable
OOD generalization. Specifically, our method first disentan-
gles molecular graphs into invariant and variant subgraphs
while preserving SE(3) equivariance. We further design a
two-phase graph diffusion generation model by first gener-
ating invariant molecules aligned with target properties, and
then fusing variant subgraph representations and property
conditions via a cross-attention mechanism to generate com-
plete molecules. Extensive experimental results demonstrate
that under distribution shifts, IC-MOL consistently outper-
forms state-of-the-art baselines across six property condi-
tions, verifying its superior generalization ability in condi-
tional molecular generation tasks. In future work, we will
explore more flexible subgraph disentanglement strategies
and adapt to more complex molecular design scenarios.
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