Automated Machine Learning on Graphs

Ziwei Zhang
Tsinghua University

DataFunCon # 2023
Graphs are Ubiquitous

- Social Network
- Logistics Network
- Biology Network
- Traffic Network
- Knowledge Graphs
- Information Network

Images are credit to web search engines
Graph Neural Network

- Design neural networks directly applicable for graphs for end-to-end learning
- Message-passing framework: nodes exchange messages along structures

Image cited from Kipf and Welling, ICLR 2017
Problems in Traditional Graph Learning Methods

- Manually design architectures and hyper-parameters through trial-and-error
- Each dataset/task is handled separately

The adaptivity of graph machine learning is limited!
A Glance of AutoML

Design ML methods → Design AutoML methods

Picture credit to Microsoft Azure Machine Learning AutoML
ML vs. AutoML

- Rely on **expert knowledge**
- **Tedious** trail-and-error
- **Limited** by human design
- **Free human** out of the loop
- **High** optimization **effectiveness**
- **Discover & extract** patterns and combinations **automatically**
Graph Neural Architecture Search (NAS)

- NAS: automatically learn the best neural architecture

- Key designs

FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search, CVPR 2019
Neural Architecture Search A Survey, JMLR 2019
AGG(·): how to aggregate information from neighbors
- Requirement: permutation-invariant
- Common choices: mean, max, sum, etc.

\(a_{ij} \): the importance of neighbors

COMBINE(·): how to update representation
- Common choices: CONCAT, SUM, MLP, etc.

\(\sigma(\cdot) \): Sigmoid, ReLU, tanh, etc.

Dimensionality of \(h_{i}^{(l)} \), the number of attention heads (when using attention)

Graph NAS Search Space

\[
m_{i}^{(l)} = \text{AGG}^{(l)} \left(\left\{ a_{ij}^{(l)} W^{(l)} h_{j}^{(l)}, \forall j \in \mathcal{N}(i) \right\} \right)
\]

\[
h_{i}^{(l+1)} = \sigma \left(\text{COMBINE}^{(l)} \left[m_{i}^{(l)}, h_{i}^{(l)} \right] \right),
\]

<table>
<thead>
<tr>
<th>Type</th>
<th>Formulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONST</td>
<td>(a_{ij}^{\text{const}} = 1)</td>
</tr>
<tr>
<td>GCN</td>
<td>(a_{ij}^{\text{GCN}} = \frac{1}{\sqrt{</td>
</tr>
<tr>
<td>GAT</td>
<td>(a_{ij}^{\text{GAT}} = \text{LeakyReLU} \left(W_{a} [h_{i}, h_{j}] \right))</td>
</tr>
<tr>
<td>SYM-GAT</td>
<td>(a_{ij}^{\text{SYM}} = a_{ij}^{\text{GAT}} + a_{ji}^{\text{GAT}})</td>
</tr>
<tr>
<td>COS</td>
<td>(a_{ij}^{\text{COS}} = \cos \left(W_{a} h_{i}, W_{a} h_{j} \right))</td>
</tr>
<tr>
<td>LINEAR</td>
<td>(a_{ij}^{\text{LINEAR}} = \tanh \left(\text{sum} \left(W_{a} h_{i}, W_{a} h_{j} \right) \right))</td>
</tr>
<tr>
<td>GENE-LINEAR</td>
<td>(a_{ij}^{\text{GENE-LINEAR}} = \tanh \left(\text{sum} \left(W_{a} h_{i}, W_{a} h_{j} \right) \right) W_{a}')</td>
</tr>
</tbody>
</table>

Graph Neural Architecture Search, *IJCAI 2020.*
Graph NAS Search Strategy

- Most previous general NAS search strategies can be directly applied

 - Reinforcement learning
 - Controller:

 - Evolutionary
 - Define how to evolve and how to select

 - Differentiable
 - Super-net: mix all possible operations

\[
y = o^{(x,y)}(x) = \sum_{o \in \mathcal{O}} \frac{\exp(z_o^{(x,y)})}{\sum_{o' \in \mathcal{O}} \exp(z_{o'}^{(x,y)})} o(x)
\]

\[
\alpha = \alpha - \nabla_\alpha \mathcal{L}_{val}(W(\alpha), \alpha)
\]

\[
W = W - \nabla_W \mathcal{L}_{train}(W, \alpha)
\]
Automated Machine Learning on Graphs: A Survey

Ziwei Zhang, Xin Wang and Wenwu Zhu
Tsinghua University, Beijing, China
zw-zhang16@mails.tsinghua.edu.cn, {xin_wang,wwzhu}@tsinghua.edu.cn

<table>
<thead>
<tr>
<th>Method</th>
<th>Search space</th>
<th>Tasks</th>
<th>Search Strategy</th>
<th>Performance Estimation</th>
<th>Other Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>GraphNAS</td>
<td></td>
<td></td>
<td>RNN controller + RL</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>AGNN[43]</td>
<td>✓</td>
<td>✓</td>
<td>Self-designed controller + RL</td>
<td>-</td>
<td>Simplify the micro search space</td>
</tr>
<tr>
<td>SNAG[44]</td>
<td>✓</td>
<td>✓</td>
<td>RNN controller + RL</td>
<td>-</td>
<td>Support heterogeneous graphs</td>
</tr>
<tr>
<td>PDNAS[45]</td>
<td>✓</td>
<td>✓</td>
<td>Differentiable</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>POSE[46]</td>
<td>✓</td>
<td>✓</td>
<td>Evolutionary algorithm</td>
<td>-</td>
<td>Sample small graphs for efficiency</td>
</tr>
<tr>
<td>NAS-GNN[47]</td>
<td>✓</td>
<td>✓</td>
<td>Evolutionary algorithm</td>
<td>-</td>
<td>Handle edge features</td>
</tr>
<tr>
<td>AutoGraph[48]</td>
<td>✓</td>
<td>✓</td>
<td>Evolutionary algorithm</td>
<td>-</td>
<td>Search for quantisation options</td>
</tr>
<tr>
<td>GeneticGNN[49]</td>
<td>✓</td>
<td>✓</td>
<td>Differentiable</td>
<td>-</td>
<td>Transfer across datasets and tasks</td>
</tr>
<tr>
<td>EGAN[50]</td>
<td>✓</td>
<td>✓</td>
<td>Evolutionary algorithm</td>
<td>-</td>
<td>Search spatial-temporal modules</td>
</tr>
<tr>
<td>NAS-GCN[51]</td>
<td>✓</td>
<td>✓</td>
<td>Differentiable</td>
<td>-</td>
<td>Search spatial-temporal modules</td>
</tr>
<tr>
<td>LPGNAS[52]</td>
<td>✓</td>
<td>✓</td>
<td>Random search</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>You et al.[53]</td>
<td>✓</td>
<td>✓</td>
<td>Self-designed algorithm</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SAGS[54]</td>
<td>✓</td>
<td>✓</td>
<td>CEM-RL[56]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Peng et al.[55]</td>
<td>✓</td>
<td>✓</td>
<td>Differentiable</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GNAS[57]</td>
<td>✓</td>
<td>✓</td>
<td>Differentiable</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AutoSTG[58]</td>
<td>✓</td>
<td>✓</td>
<td>One-shot</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DSS[59]</td>
<td>✓</td>
<td>✓</td>
<td>One-shot</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SANE[60]</td>
<td>✓</td>
<td>✓</td>
<td>One-shot</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AutoAttend[61]</td>
<td>✓</td>
<td>✓</td>
<td>One-shot</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 1: A summary of different NAS methods for graph machine learnings.

Paper collection: https://github.com/THUMNLab/awesome-auto-graph-learning
Challenges for the Existing Methods

- GraphNAS has many unique and unsolved challenges

Graph Structure

Scalability

Robustness

billions of nodes/edges
Challenge 1: Graph Structure

- Graph structure is the key to GraphNAS
- Previous works assume fixed structures
 - Q1: Is the input graph structure optimal?
 - Q2: How to select architectures and graph structures that suit each other?

Challenge: how to model different graph structure in GraphNAS
Analysis

- Different operations fit graphs with different amount of information

Theorem 2 Under our synthetic graph setting, let n be the number of edges connected the target node, the relative distance between the centers of two classes is $|D|$, which follows $D \sim \mathcal{N}(0, \beta^2)$. Then, the probability of that linear operation gives more accurate prediction than GCN on the target node is

$$P = \Phi\left(\frac{\sqrt{2n|D|}}{(\delta+1)\sqrt{(n+1)(n+2)}}\right).$$

- Factors to determine the amount of information: signal to noise ratio

- Synthetic datasets:

More structural information

Less structural information

GASSO: Graph Architecture Search with Structure Optimization

Learn graph structure and GNN architecture through a joint optimization scheme

GASSO: Model

- Formulation: bi-level optimization to tri-level optimization

\[
\begin{align*}
\min_{\mathcal{A}} & \mathcal{L}_{\text{val}}(W^*, \mathcal{A}) \\
\text{s.t.} & \ W^* = \arg\min_W \mathbb{E}_{A \in \Gamma(A)} \mathcal{L}_{\text{train}}(W, A).
\end{align*}
\]

\[
\begin{align*}
\min_{\mathcal{A}} & \mathcal{L}_{\text{val}}(W^*, \mathcal{A}, G^*) \\
\text{s.t.} & \ G^* = \arg\min_G \mathcal{L}_s(W^*, \mathcal{A}, G) \\
& \ W^* = \arg\min_W \mathbb{E}_{A \in \Gamma(A)} \mathcal{L}_{\text{train}}(W, \mathcal{A}, G).
\end{align*}
\]

- Feature Smoothness Constraint

\[
\mathcal{L}_s = \lambda \sum_{i,j}^N G_{ij} \| h_i - h_j \|_2^2 + \sum_{i,j}^N (G_{ij} - G_{o,ij})^2,
\]

- Homophily assumption/first-order neighborhood
- Mask original edges: \(G = G_o \odot M \)
- Possible extensions: removing edge \(\rightarrow \) adding edges
- Challenge: time complexity, there are \(O(n^2) \) possible edges
GASSO: Experiments

- Experiments on graph benchmarks

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Cora</th>
<th>Citeseer</th>
<th>Pubmed</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCN†</td>
<td>87.40</td>
<td>79.20</td>
<td>88.40</td>
</tr>
<tr>
<td>GAT†</td>
<td>87.26 ± 0.08</td>
<td>77.82 ± 0.11</td>
<td>86.83 ± 0.11</td>
</tr>
<tr>
<td>ARMA†</td>
<td>86.06 ± 0.05</td>
<td>76.50 ± 0.00</td>
<td>88.70 ± 0.24</td>
</tr>
<tr>
<td>DropEdge†</td>
<td>87.60 ± 0.05</td>
<td>78.57 ± 0.00</td>
<td>87.34 ± 0.24</td>
</tr>
<tr>
<td>DARTS</td>
<td>86.18 ± 0.36</td>
<td>74.96 ± 0.10</td>
<td>88.38 ± 0.18</td>
</tr>
<tr>
<td>GDAS</td>
<td>85.48 ± 0.30</td>
<td>74.20 ± 0.11</td>
<td>89.50 ± 0.14</td>
</tr>
<tr>
<td>ASAP</td>
<td>85.21 ± 0.13</td>
<td>75.14 ± 0.09</td>
<td>88.65 ± 0.10</td>
</tr>
<tr>
<td>XNAS</td>
<td>86.80 ± 0.14</td>
<td>76.33 ± 0.09</td>
<td>88.61 ± 0.25</td>
</tr>
<tr>
<td>GraphNAS‡</td>
<td>86.83 ± 0.56</td>
<td>79.05 ± 0.28</td>
<td>89.99 ± 0.43</td>
</tr>
<tr>
<td>GASSO</td>
<td>87.63 ± 0.29</td>
<td>79.61 ± 0.32</td>
<td>90.52 ± 0.24</td>
</tr>
</tbody>
</table>

- Experiments on larger graph datasets

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Physics</th>
<th>CoraFull</th>
<th>ogbn-arxiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCN</td>
<td>95.94</td>
<td>68.08</td>
<td>70.39</td>
</tr>
<tr>
<td>GAT</td>
<td>95.86</td>
<td>65.78</td>
<td>68.53</td>
</tr>
<tr>
<td>DARTS</td>
<td>95.74</td>
<td>68.51</td>
<td>69.52</td>
</tr>
<tr>
<td>GASSO</td>
<td>96.38</td>
<td>68.89</td>
<td>70.52</td>
</tr>
</tbody>
</table>
Dynamic Heterogenous Graphs

- **Dynamic**: structures and features evolve through time
- **Heterogeneous**: various node and edge types
- More complicated structural patterns

Citation network

Finance Graph

How to model the dynamic and heterogenous structure in GraphNAS?
Dynamic Heterogeneous Graph Architecture Search

Automatically tailor an optimal attention-based architecture for dynamic heterogeneous graphs.
DHGAS: Dynamic Heterogeneous Graph Attention

- **Goal:** capture dynamic heterogeneous information through attention

Definition 2 Dynamic Heterogeneous Neighborhood: for the neighborhood of each node u, we use subscripts to denote the relation type and superscripts to denote the time stamp, i.e., $\mathcal{N}^t_r(u) = \{v : (u,v) \in \mathcal{E}^t, \phi_e(u,v) = r\}$. With a slight abuse of notations, we use $\mathcal{N}(u)$ to denote all types of neighbors at all time stamps in dynamic heterogeneous graphs, i.e., $\mathcal{N}(u) = \bigcup_{r,t} \mathcal{N}^t_r(u)$.

- **Time/type-aware node mapping functions**

- **Time/type-aware relation mapping functions**

- **Update with time/type-aware attention**

$$
\begin{align*}
q^t_v &= \mathcal{F}_q^{N}(v,\phi_n(v),t)(h^t_v), \\
k^t_v &= \mathcal{F}_k^{N}(v,\phi_n(v),t)(h^t_v), \\
v^t_v &= \mathcal{F}_v^{N}(v,\phi_n(v),t)(h^t_v), \\
\alpha_{u,v} &= \mathcal{F}_\phi^{R}(u,v,\phi_e(u,v),\Delta t)(q^t_u, k^t_v), \\
\mathcal{F}_\phi^{R}(u,v,\phi_e(u,v),\Delta t)(q, k) &= \frac{qW^{\phi_e(u,v),\Delta t}k^T}{\sqrt{d}}, \\
\end{align*}
$$

$$
\begin{align*}
\hat{h}_u^t &= \text{Update}(h^t_u, \sum_{v \in \mathcal{N}(u)} \hat{\alpha}_{u,v} v^t_v)), \\
\hat{\alpha}_{u,v} &= \frac{\exp(\alpha_{u,v})}{\sum_{v' \in \mathcal{N}(u)} \exp(\alpha_{u,v'})}.
\end{align*}
$$
DHGAS: Attention Parameterization and Localization Space

- **Goal**: a concise yet expressive search space based on attention

- **Parameterization Space**: how to parameterize attention
 \[A^{Pa} = A^N \times A^R \]
 \[A^N = \{1, ..., K_N\}^{T \times |C_n|} \]
 \[A^R = \{1, ..., K_R\}^{2T \times |C_e|} \]

- **Localization Space**: Locate where to apply attention
 \[A^{Lo} = \{0, 1\}^{T \times T \times |C_e|} \]

- Cover many classic GNNs as special cases: GCN, GAT, type-aware MLP, HGT(WWW20), DyHATR(ECML20), HTGNN(SDM22), etc.
DHGAS: Multi-Stage Differentiable Architecture Search

Goal: efficient and differentiable search strategy
- Relax discrete operation choices to continuous ones

\[
\tilde{F}(x) = \sum_{i=1}^{|A|} \frac{\exp(\beta_i)}{\sum_{j=1}^{|A|} \exp(\beta_j)} F_i(x)
\]

- Update super-networks weights and architecture differentiably

\[
\begin{align*}
 w &\leftarrow w - \eta_w \frac{\partial L_{\text{train}}}{\partial w}, \\
 \beta &\leftarrow \beta - \eta_\beta \frac{\partial L_{\text{val}}}{\partial \beta}
\end{align*}
\]

- Multi-stage training to stabilize the searching process
DHGAS: Experiments

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Link Prediction (AUC%)</th>
<th>Node Classification (F1%)</th>
<th>Node Regression (MAE)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aminer</td>
<td>Ecomm</td>
<td>Yelp</td>
</tr>
<tr>
<td>GCN</td>
<td>73.84 ± 0.06</td>
<td>77.94 ± 0.22</td>
<td>37.02 ± 0.00</td>
</tr>
<tr>
<td>GAT</td>
<td>80.84 ± 0.96</td>
<td>78.49 ± 0.31</td>
<td>35.54 ± 0.00</td>
</tr>
<tr>
<td>RGCN</td>
<td>82.75 ± 0.12</td>
<td>82.27 ± 0.51</td>
<td>37.75 ± 0.00</td>
</tr>
<tr>
<td>HGT</td>
<td>78.43 ± 1.81</td>
<td>81.09 ± 0.52</td>
<td>34.62 ± 0.00</td>
</tr>
<tr>
<td>DyHATR</td>
<td>74.24 ± 2.09</td>
<td>71.69 ± 0.90</td>
<td>34.49 ± 0.16</td>
</tr>
<tr>
<td>HGT+</td>
<td>85.60 ± 0.12</td>
<td>76.68 ± 0.85</td>
<td>38.33 ± 0.00</td>
</tr>
<tr>
<td>HTGNN</td>
<td>78.08 ± 0.80</td>
<td>76.78 ± 6.37</td>
<td>36.33 ± 0.07</td>
</tr>
<tr>
<td>GraphNAS</td>
<td>81.61 ± 0.98</td>
<td>79.37 ± 0.21</td>
<td>37.73 ± 0.00</td>
</tr>
<tr>
<td>DiffMG</td>
<td>85.04 ± 0.30</td>
<td>81.69 ± 0.06</td>
<td>38.65 ± 0.00</td>
</tr>
<tr>
<td>DHGAS</td>
<td>88.13 ± 0.18</td>
<td>86.56 ± 0.58</td>
<td>41.99 ± 0.18</td>
</tr>
</tbody>
</table>

Significantly outperforms baselines for various downstream tasks.
DHGAS: Experiments

- Jointly modeling dynamic and heterogeneous information
- Tailor optimal attention mechanisms for different datasets

Ablation studies

Performance and costs tradeoff

Architecture showcase
Challenge 2: Large-scale Graphs

Social Networks
- WeChat: 1.29 billion monthly active users (Aug 2022)
- Facebook: 2.8 billion active users (2020)

E-commerce Networks
- Millions of sellers, about 0.9 billion buyers, 10.6 trillion turnovers in China (2019)

Citation Networks
- 131 million authors, 185 million publications, 754 million citations (Aminer, Aug 2022)

Challenge: how to efficiently scale to billion-scale graphs
SuperNet Training

- Supernet: combine all possible operations of the search space

- Trained by sampling architectures and back-propagations

- Supernet training for large-scale graphs:
 - Using the whole graph → **computational bottleneck**
 - Straight-forwardly sampling subgraphs → **consistency issue**
Jointly sample subgraphs and architectures to find the most suitable architecture.
GAUSS: Architecture Importance Sampling

- **Goal**: stabilize the training of the supernet
- **Method**: important sampling of architectures
 - $\Gamma(\mathcal{A})$: proposal distribution
 - Learning proposal distribution: reinforcement learning with GRU controller

Reward function: performance + regularizer

$\theta = \arg\max_\theta (R(\theta) + \beta H(\Gamma(\theta)))$
Goal: smooth the optimization objective
Assumption: “senior students” can teach “junior students”
Method: assign weights to different samples, gradually progress from easier parts to difficult parts

GAUSS: Architecture Peer Learning on Graph
GAUSS: Experiments

Table 2

<table>
<thead>
<tr>
<th>Dataset</th>
<th>#Nodes</th>
<th>#Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>18,333</td>
<td>81,894</td>
</tr>
<tr>
<td>PHYSICS</td>
<td>34,493</td>
<td>247,962</td>
</tr>
<tr>
<td>ARXIV</td>
<td>169,343</td>
<td>1,166,243</td>
</tr>
<tr>
<td>PRODUCTS</td>
<td>2,449,029</td>
<td>61,859,140</td>
</tr>
<tr>
<td>PAPERS100M</td>
<td>111,059,956</td>
<td>1,615,685,872</td>
</tr>
</tbody>
</table>

Table 2. The results of our proposed method and baseline methods. We report both the validation and test accuracy [%] over 10 runs with different seeds. OOT means out-of-time (cannot converge within 1 single GPU day), while OOM means out-of-memory (cannot run on a Tesla V100 GPU with 32GB memory). The results of the best hand-crafted and automated method are in bold, respectively.

<table>
<thead>
<tr>
<th>Methods</th>
<th>CS valid</th>
<th>CS test</th>
<th>Physics valid</th>
<th>Physics test</th>
<th>Arxiv valid</th>
<th>Arxiv test</th>
<th>Products valid</th>
<th>Products test</th>
<th>PAPERS100M valid</th>
<th>PAPERS100M test</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCN</td>
<td>94.10±0.21</td>
<td>93.98±0.21</td>
<td>96.29±0.05</td>
<td>96.38±0.07</td>
<td>72.76±0.15</td>
<td>71.70±0.18</td>
<td>91.75±0.04</td>
<td>80.19±0.46</td>
<td>70.32±0.11</td>
<td>67.06±0.17</td>
</tr>
<tr>
<td>GAT</td>
<td>93.74±0.27</td>
<td>93.48±0.36</td>
<td>96.25±0.23</td>
<td>96.37±0.23</td>
<td>73.19±0.12</td>
<td>71.85±0.21</td>
<td>90.75±0.16</td>
<td>80.59±0.40</td>
<td>70.26±0.16</td>
<td>67.26±0.06</td>
</tr>
<tr>
<td>SAGE</td>
<td>95.65±0.07</td>
<td>95.33±0.11</td>
<td>96.76±0.10</td>
<td>96.72±0.07</td>
<td>73.11±0.08</td>
<td>71.78±0.15</td>
<td>91.75±0.04</td>
<td>80.19±0.46</td>
<td>70.32±0.11</td>
<td>67.06±0.17</td>
</tr>
<tr>
<td>GIN</td>
<td>92.00±0.43</td>
<td>92.14±0.34</td>
<td>96.03±0.11</td>
<td>96.04±0.15</td>
<td>71.16±0.10</td>
<td>70.01±0.33</td>
<td>91.58±0.30</td>
<td>79.07±0.52</td>
<td>68.98±0.16</td>
<td>65.78±0.09</td>
</tr>
<tr>
<td>GraphNAS</td>
<td>94.90±0.14</td>
<td>94.67±0.23</td>
<td>96.76±0.10</td>
<td>96.72±0.07</td>
<td>72.76±0.15</td>
<td>71.70±0.18</td>
<td>OOT</td>
<td>OOT</td>
<td>OOT</td>
<td>OOT</td>
</tr>
<tr>
<td>SGAS</td>
<td>95.62±0.06</td>
<td>95.44±0.06</td>
<td>96.44±0.10</td>
<td>96.50±0.11</td>
<td>72.38±0.11</td>
<td>71.34±0.25</td>
<td>OOM</td>
<td>OOM</td>
<td>OOM</td>
<td>OOM</td>
</tr>
<tr>
<td>DARTS</td>
<td>95.62±0.06</td>
<td>95.44±0.06</td>
<td>96.21±0.16</td>
<td>96.40±0.21</td>
<td>73.43±0.07</td>
<td>72.10±0.25</td>
<td>OOM</td>
<td>OOM</td>
<td>OOM</td>
<td>OOM</td>
</tr>
<tr>
<td>EGAN</td>
<td>95.60±0.10</td>
<td>95.43±0.05</td>
<td>96.39±0.18</td>
<td>96.45±0.19</td>
<td>72.91±0.25</td>
<td>71.75±0.35</td>
<td>OOM</td>
<td>OOM</td>
<td>OOM</td>
<td>OOM</td>
</tr>
<tr>
<td>Basic</td>
<td>95.13±0.07</td>
<td>95.45±0.05</td>
<td>96.25±0.06</td>
<td>96.53±0.06</td>
<td>73.28±0.06</td>
<td>72.00±0.33</td>
<td>91.79±0.11</td>
<td>80.56±0.39</td>
<td>69.49±0.37</td>
<td>66.24±0.46</td>
</tr>
<tr>
<td>GAUSS</td>
<td>96.08±0.11</td>
<td>96.49±0.11</td>
<td>96.79±0.06</td>
<td>96.76±0.08</td>
<td>73.63±0.10</td>
<td>72.35±0.21</td>
<td>91.60±0.12</td>
<td>81.26±0.36</td>
<td>70.57±0.07</td>
<td>67.32±0.18</td>
</tr>
</tbody>
</table>

Can process **billion-scale graphs using single GPU**
Challenge 3: Robustness

- Distribution shifts
- Searching a fixed architecture may fail to generalize
- Adversarial attacks
 - Greatly affects risk-sensitive applications

- Clean Graph
- Perturbed Graph

Fraud Detection
Cyber security
GRACES: Graph NAS under Distribution Shifts

Customize a unique GNN architecture for each graph instance to handle distribution shifts

Graph Neural Architecture Search under Distribution Shifts. *ICML, 2022.*
GRACES: Graph Encoder

- **Goal**: learn a vector representation for each graph to reflect its characteristics
- **Challenge**: preserve diverse properties of the original graph
- **Method**: self-supervised disentangled graph encoder
 - Encoder: disentangled GNN
 - Supervised loss: the downstream task
 - Self-supervised loss: node degree as regularization
GRACES: Architecture Customization

- **Goal**: customize an architecture based on the graph representation
- **Assumption**: graphs with similar characteristics need similar architectures
- **Method**: prototype based architecture customization

- Probabilities of choosing operations:
- Regularizer to avoid mode collapse:
Goal: learn parameters for the customized architectures

Method: customized super-network

Loss functions:

\[L = \gamma L_{\text{main}} + (1 - \gamma) L_{\text{reg}} \]

\[L_{\text{reg}} = L_{\text{sup}} + \beta_1 L_{\text{ssl}} + \beta_2 L_{\cos} \]
GRACES: Experiments

<table>
<thead>
<tr>
<th>bias</th>
<th>$b = 0.7$</th>
<th>$b = 0.8$</th>
<th>$b = 0.9$</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCN</td>
<td>48.39±1.69</td>
<td>41.55±3.88</td>
<td>39.13±1.76</td>
</tr>
<tr>
<td>GAT</td>
<td>50.75±4.89</td>
<td>42.48±2.46</td>
<td>40.10±5.19</td>
</tr>
<tr>
<td>GIN</td>
<td>36.83±5.49</td>
<td>34.83±3.10</td>
<td>37.45±3.59</td>
</tr>
<tr>
<td>SAGE</td>
<td>46.66±2.51</td>
<td>44.50±5.79</td>
<td>44.79±4.83</td>
</tr>
<tr>
<td>GraphConv</td>
<td>47.29±1.95</td>
<td>44.67±5.88</td>
<td>44.82±4.84</td>
</tr>
<tr>
<td>MLP</td>
<td>48.27±1.27</td>
<td>46.73±3.48</td>
<td>46.41±2.34</td>
</tr>
<tr>
<td>ASAP</td>
<td>54.07±13.85</td>
<td>48.32±12.72</td>
<td>43.52±8.41</td>
</tr>
<tr>
<td>DIR</td>
<td>50.08±3.46</td>
<td>48.22±6.27</td>
<td>43.11±5.43</td>
</tr>
<tr>
<td>random</td>
<td>45.92±4.29</td>
<td>51.72±5.38</td>
<td>45.89±5.09</td>
</tr>
<tr>
<td>DARTS</td>
<td>50.63±8.90</td>
<td>45.41±7.71</td>
<td>44.44±4.42</td>
</tr>
<tr>
<td>GNAS</td>
<td>55.18±18.62</td>
<td>51.64±19.22</td>
<td>37.56±5.43</td>
</tr>
<tr>
<td>PAS</td>
<td>52.15±4.35</td>
<td>43.12±5.95</td>
<td>39.84±1.67</td>
</tr>
<tr>
<td>GRACES</td>
<td>65.72±17.47</td>
<td>59.57±17.37</td>
<td>50.94±8.14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>dataset</th>
<th>hiv</th>
<th>sider</th>
<th>bace</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCN</td>
<td>75.99±1.19</td>
<td>59.84±1.54</td>
<td>68.93±6.95</td>
</tr>
<tr>
<td>GAT</td>
<td>76.80±0.80</td>
<td>57.40±2.01</td>
<td>75.34±2.36</td>
</tr>
<tr>
<td>GIN</td>
<td>77.07±1.49</td>
<td>57.57±1.56</td>
<td>73.46±5.24</td>
</tr>
<tr>
<td>SAGE</td>
<td>75.58±1.40</td>
<td>56.36±1.32</td>
<td>74.85±2.74</td>
</tr>
<tr>
<td>GraphConv</td>
<td>74.46±0.86</td>
<td>56.09±1.06</td>
<td>78.87±1.74</td>
</tr>
<tr>
<td>MLP</td>
<td>70.88±0.83</td>
<td>58.16±1.41</td>
<td>71.60±2.30</td>
</tr>
<tr>
<td>ASAP</td>
<td>73.81±1.17</td>
<td>55.77±1.18</td>
<td>71.55±2.74</td>
</tr>
<tr>
<td>DIR</td>
<td>77.05±0.57</td>
<td>57.34±0.36</td>
<td>76.03±2.20</td>
</tr>
<tr>
<td>DARTS</td>
<td>74.04±1.75</td>
<td>60.64±1.37</td>
<td>76.71±1.83</td>
</tr>
<tr>
<td>PAS</td>
<td>71.19±2.28</td>
<td>59.31±1.48</td>
<td>76.59±1.87</td>
</tr>
<tr>
<td>GRACES</td>
<td>77.31±1.00</td>
<td>61.85±2.56</td>
<td>79.46±3.04</td>
</tr>
</tbody>
</table>

Customization of architectures
Robust Graph Neural Architecture Search

Robust search space and robustness-aware search strategy of GraphNAS

Adversarially Robust Neural Architecture Search for Graph Neural Networks. *CVPR, 2023.*
G-RNA: Robust Search Space

- **Goal:** remove noises in the structure
- **Method:** graph structure mask

\[h_i^{(l)} = \sigma \left(W^{(l)} \text{Comb} \left(h_i^{(l-1)}, \text{Aggr} \left[m_{ij}^{(l)}, e_j^{(l)} h_j^{(l-1)}, j \in \tilde{N}(i) \right] \right) \right) \]

<table>
<thead>
<tr>
<th>Operator</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity</td>
<td>(M^{(l)} = A^{(l-1)})</td>
</tr>
<tr>
<td>LRA</td>
<td>(A^{(l-1)} = U^{(l-1)} S^{(l-1)} (V^{(l-1)})^T), (M^{(l)} = U^{(l-1)} S^{(l-1)} (V^{(l-1)})^T)</td>
</tr>
<tr>
<td>NFS</td>
<td>(m_{ij}^{(l)} = \begin{cases} 0, & \text{if } a_{ij}^{(l-1)} > 0 \text{ and } J_{ij} < \tau \ a_{ij}^{(l-1)}, & \text{otherwise} \end{cases})</td>
</tr>
<tr>
<td>NIE</td>
<td>(m_{ij}^{(l)} = \beta m_{ij}^{(l-1)} + (1 - \beta) \hat{a}_{ij}^{(l)})</td>
</tr>
<tr>
<td>VPO</td>
<td>(M^{(l)} = \sum_{v=1}^{V} \theta_v (A^{(l-1)})_v)</td>
</tr>
</tbody>
</table>
G-RNA: Robustness Metric

- **Goal:** consider robustness during search process
- **Method:** robustness metric

 \[
 R(A, f) = -E_{A'} \left[\frac{1}{N} \sum_{i=1}^{N} D_{KL}(f(A)_i || f(A')_i) \right], A' = T_{\Delta}(A)
 \]

- **Approximation:** surrogate model
 \[
 R(A, f) \approx -\frac{1}{TN} \sum_{t=1}^{T} \sum_{i=1}^{N} (D_{KL}(f(A)_i || f(A'_{i}))).
 \]

- **Verification of the robustness metric**

- **Evolutionary search algorithm**
 - **Fitness function:** \(ACC_{val}(\alpha) + \lambda R(\alpha) \)
G-RNA: Experimental Results

- **Non-targeted attack**

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Model</th>
<th>Proportion of changed edges (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Vanilla GNN</td>
<td>GCN</td>
<td>86.35±0.15</td>
</tr>
<tr>
<td></td>
<td>GCN-JK</td>
<td>87.07±0.12</td>
</tr>
<tr>
<td></td>
<td>GAT</td>
<td>85.28±0.20</td>
</tr>
<tr>
<td></td>
<td>GAT-JK</td>
<td>85.72±0.14</td>
</tr>
<tr>
<td>PubMed</td>
<td>RGCN</td>
<td>86.64±0.08</td>
</tr>
<tr>
<td>Robust GNN</td>
<td>GCN-Jaccard</td>
<td>87.11±0.04</td>
</tr>
<tr>
<td></td>
<td>Pro-GNN</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PTDNet</td>
<td>83.87±0.24</td>
</tr>
<tr>
<td></td>
<td>DropEdge</td>
<td>83.93±0.10</td>
</tr>
<tr>
<td>Graph NAS</td>
<td>GraphNAS</td>
<td>87.26±0.04</td>
</tr>
<tr>
<td></td>
<td>GASSO</td>
<td>86.27±0.12</td>
</tr>
<tr>
<td></td>
<td>G-RNA w/o rob</td>
<td>87.18±0.07</td>
</tr>
<tr>
<td></td>
<td>G-RNA</td>
<td>87.48±0.12</td>
</tr>
</tbody>
</table>
However, there is no automated graph machine learning library yet!
Introduction – AutoGL

- We design an autoML framework & toolkit for machine learning on graphs

Open source

Easy to use

Flexible to be extended

https://mn.cs.tsinghua.edu.cn/AutoGL
https://github.com/THUMNLab/AutoGL
https://www.gitlink.org.cn/THUMNLab/AutoGL
Overall Framework
Modular Design

Key modules:
- **AutoGL Dataset**: manage graph datasets
- **AutoGL Solver**: a high-level API to control the overall pipeline
- **Five functional modules**:
 - Auto Feature Engineering
 - Neural Architecture Search
 - Hyper-parameter Optimization
 - Model Training
 - Auto Ensemble
AutoGL Roadmap

- **v0.1**
 - Initial release
 - Overall pipeline
 - Dataset, feature engineering, model training, auto ensemble
 - Hyper-parameter optimization

- **v0.2**
 - Neural Architecture Search
 - Graph sampling
 - Model enhancement
 - Unit tests

- **v0.3**
 - DGL backend, PyG 2.0
 - Heterogenous graphs
 - Decoupled modeling
 - NAS enhancements

- **v0.4**
 - NAS-Bench-Graph
 - Model robustness
 - Self-supervised learning
 - Refined tutorial/documentation

- **v0.5 (scheduled)**
 - Lightweight version
 - Downstream tasks
 - Biology
 - ...

- **2020.12**

- **2021.7**

- **2021.12**

- **2022.12**

- **2023.8/9**

Team member (~10)

- Architect: Chaoyu Guan (v0.1-v0.3), Yijian Qin (v0.4-v0.5)
- Programmer: Haoyang Li, Zeyang Zhang, Heng Chang, Zixin Sun, Beini Xie, Jie Cai, Zizhao Zhang, Jiyan Jiang, Yao Yang, Yipeng Zhang
Meet AutoGL: The First Ever AutoML Framework for Graph Datasets

31/10/2020
The Evaluation of Graph NAS Methods

- How to properly evaluate different GraphNAS algorithms
- Incomparable and irreproducible results
- Computationally expensive
- Diverse evaluation protocols
NAS-Bench-Graph

- The first tabular NAS benchmark for GraphNAS
- Unified, Reproducible, Efficient
- Provide detailed metrics of all architectures (exhaust 8,000 GPU hours)

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Type</th>
<th>Search Space</th>
<th>Data</th>
<th>Datasets</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAS-Bench-101</td>
<td>Tabular</td>
<td>423k</td>
<td>CV</td>
<td>1</td>
</tr>
<tr>
<td>NAS-Bench-201</td>
<td>Tabular</td>
<td>6k</td>
<td>CV</td>
<td>3</td>
</tr>
<tr>
<td>NAS-Bench-1shot1</td>
<td>Tabular</td>
<td>364k</td>
<td>CV</td>
<td>1</td>
</tr>
<tr>
<td>NAS-Bench-ASR</td>
<td>Tabular</td>
<td>8k</td>
<td>Acoustics</td>
<td>1</td>
</tr>
<tr>
<td>NAS-Bench-NLP</td>
<td>Tabular</td>
<td>14k</td>
<td>NLP</td>
<td>2</td>
</tr>
<tr>
<td>HW-NAS-Bench</td>
<td>Tabular</td>
<td>6k</td>
<td>CV</td>
<td>3</td>
</tr>
<tr>
<td>NATS-Bench</td>
<td>Tabular</td>
<td>32k</td>
<td>CV</td>
<td>3</td>
</tr>
<tr>
<td>NAs-HPO-Bench-II</td>
<td>Surrogate</td>
<td>192k</td>
<td>CV</td>
<td>1</td>
</tr>
<tr>
<td>NAS-Bench-MR</td>
<td>Surrogate</td>
<td>10^{23}</td>
<td>CV</td>
<td>4</td>
</tr>
<tr>
<td>TransNAS-Bench</td>
<td>Tabular</td>
<td>7k</td>
<td>CV</td>
<td>14</td>
</tr>
<tr>
<td>NAS-Bench-111</td>
<td>Surrogate</td>
<td>423k</td>
<td>CV</td>
<td>1</td>
</tr>
<tr>
<td>NAS-Bench-311</td>
<td>Surrogate</td>
<td>10^{18}</td>
<td>CV</td>
<td>1</td>
</tr>
<tr>
<td>NAS-Bench-Zero</td>
<td>Tabular</td>
<td>34k</td>
<td>CV</td>
<td>3</td>
</tr>
<tr>
<td>Surr-NAS-Bench-FBNet</td>
<td>Surrogate</td>
<td>10^{21}</td>
<td>CV</td>
<td>2</td>
</tr>
<tr>
<td>NAS-Bench-Graph</td>
<td>Tabular</td>
<td>26k</td>
<td>Graph</td>
<td>9</td>
</tr>
</tbody>
</table>
NAS-Bench-Graph: Designs

- Search space:
 - Macro space:

- Operations: GCN, GAT, GraphSAGE, GIN, ARMA, k-GNN, MLP

- Datasets:

<table>
<thead>
<tr>
<th>Dataset</th>
<th>#Vertices</th>
<th>#Links</th>
<th>#Features</th>
<th>#Classes</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cora</td>
<td>2,708</td>
<td>5,429</td>
<td>1,433</td>
<td>7</td>
<td>Accuracy</td>
</tr>
<tr>
<td>CiteSeer</td>
<td>3,327</td>
<td>4,732</td>
<td>3,703</td>
<td>6</td>
<td>Accuracy</td>
</tr>
<tr>
<td>PubMed</td>
<td>19,717</td>
<td>44,338</td>
<td>500</td>
<td>3</td>
<td>Accuracy</td>
</tr>
<tr>
<td>Coauthor-CS</td>
<td>18,333</td>
<td>81,894</td>
<td>6,805</td>
<td>15</td>
<td>Accuracy</td>
</tr>
<tr>
<td>Coauthor-Physics</td>
<td>34,493</td>
<td>247,962</td>
<td>8,415</td>
<td>5</td>
<td>Accuracy</td>
</tr>
<tr>
<td>Amazon-Photo</td>
<td>7,487</td>
<td>119,043</td>
<td>745</td>
<td>8</td>
<td>Accuracy</td>
</tr>
<tr>
<td>Amazon-Computers</td>
<td>13,381</td>
<td>245,778</td>
<td>767</td>
<td>10</td>
<td>Accuracy</td>
</tr>
<tr>
<td>ogbn-arxiv</td>
<td>169,343</td>
<td>1,166,243</td>
<td>128</td>
<td>40</td>
<td>Accuracy</td>
</tr>
<tr>
<td>ogbn-proteins</td>
<td>132,534</td>
<td>39,561,252</td>
<td>8</td>
<td>112</td>
<td>ROC-AUC</td>
</tr>
</tbody>
</table>

26,206 architectures cover representative GNNs

9 datasets different sizes/domains
NAS-Bench-Graph: Usage

- Integrated with two representative libraries: AutoGL and NNI

<table>
<thead>
<tr>
<th>Library</th>
<th>Method</th>
<th>Cora</th>
<th>CiteSeer</th>
<th>PubMed</th>
<th>CS</th>
<th>Physics</th>
<th>Photo</th>
<th>Computers</th>
<th>arXiv</th>
<th>proteins</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoGL</td>
<td>GNAS</td>
<td>82.04</td>
<td>70.89</td>
<td>77.79</td>
<td>90.97</td>
<td>92.43</td>
<td>92.43</td>
<td>84.74</td>
<td>72.00</td>
<td>78.71</td>
</tr>
<tr>
<td></td>
<td>Auto-GNN</td>
<td>81.80</td>
<td>70.76</td>
<td>77.69</td>
<td>91.04</td>
<td>92.42</td>
<td>92.38</td>
<td>84.53</td>
<td>72.13</td>
<td>78.54</td>
</tr>
<tr>
<td>NNI</td>
<td>Random</td>
<td>82.09</td>
<td>70.49</td>
<td>77.91</td>
<td>90.93</td>
<td>92.35</td>
<td>92.44</td>
<td>84.78</td>
<td>72.04</td>
<td>78.32</td>
</tr>
<tr>
<td></td>
<td>EA</td>
<td>81.85</td>
<td>70.48</td>
<td>77.96</td>
<td>90.60</td>
<td>92.22</td>
<td>92.43</td>
<td>84.29</td>
<td>71.91</td>
<td>77.93</td>
</tr>
<tr>
<td></td>
<td>RL</td>
<td>82.27</td>
<td>70.66</td>
<td>77.96</td>
<td>90.98</td>
<td>92.48</td>
<td>92.42</td>
<td>84.90</td>
<td>72.13</td>
<td>78.52</td>
</tr>
<tr>
<td>The top 5%</td>
<td></td>
<td>80.63</td>
<td>69.07</td>
<td>76.60</td>
<td>90.01</td>
<td>91.67</td>
<td>91.57</td>
<td>82.77</td>
<td>71.69</td>
<td>78.37</td>
</tr>
</tbody>
</table>

- Example: ~10 lines of codes

```python
from readbench import read
bench = read('cora0.bench')  # dataset and seed
info = bench[arch.valid_hash()]
epoch = 50
info['dur'][epoch][0]  # training performance
info['dur'][epoch][1]  # validation performance
info['dur'][epoch][2]  # testing performance
info['dur'][epoch][3]  # training loss
info['dur'][epoch][4]  # validation loss
info['dur'][epoch][5]  # testing loss
info['dur'][epoch][6]  # best performance
```

- Open source: https://github.com/THU姆NLab/NAS-Bench-Graph
NAS-Bench-Graph: Analysis

Performance distribution

Architecture space smoothness

Architecture distribution & Correlation

Influence of operations at different depth
Recap: Our Recent Works on GraphNAS

- **Graph Structure**
 - Structure Learning
 - NeurIPS'21
 - Dynamic Heterogenous Graph
 - AAAI'23

- **Scalability**
 - Billion-scale Graphs
 - ICML'22
 - Distribution Shifts
 - ICML'22
 - Adversarial Robustness
 - CVPR'23

- **Robustness**

NAS-Bench-Graph

AutoGL: a library for automated graph machine learning
Acknowledgements

Wenwu Zhu
Tsinghua Univ.

Chaoyu Guan
Tsinghua Univ.

Yijian Qin
Tsinghua Univ.

Xin Wang
Tsinghua Univ.

Beini Xie
Tsinghua Univ.

Zeyang Zhang
Tsinghua Univ.
THANK YOU!

https://zw-zhang.github.io
zwzhang@tsinghua.edu.cn