

Automated Machine Learning on Graphs

Ziwei Zhang Tsinghua University

DataFunCon # 2023

Graphs are Ubiquitous

Social Network Logistics Network

Traffic Network

Knowledge Graphs

Information Network

Images are credit to web search engines

Graph Neural Network

Design neural networks directly applicable for graphs for end-to-end learning
 Message-passing framework: nodes exchange messages along structures

Image cited from Kipf and Welling, ICLR 2017

Problems in Traditional Graph Learning Methods

Manually design architectures and hyper-parameters through trial-and-error
 Each dataset/task is handled separately

The adaptivity of graph machine learning is limited!

A Glance of AutoML

Design ML methods → Design AutoML methods

Picture credit to Microsoft Azure Machine Learning AutoML

ML vs. AutoML

Rely on expert knowledge
Tedious trail-and-error
Limited by human design

Free human out of the loop
 High optimization effectiveness
 Discover & extract patterns and combinations automatically

NAS: automatically learn the best neural architecture

Neural Architecture Search A Survey, JMLR 2019

Graph NAS Search Space

$$\mathbf{m}_{i}^{(l)} = \mathbf{AGG}^{(l)} \left(\left\{ a_{ij}^{(l)} \mathbf{W}^{(l)} \mathbf{h}_{i}^{(l)}, \forall j \in \mathcal{N}(i) \right\} \right)$$
$$\mathbf{h}_{i}^{(l+1)} = \sigma \left(\mathbf{COMBINE}^{(l)} \left[\mathbf{m}_{i}^{(l)}, \mathbf{h}_{i}^{(l)} \right] \right),$$

AGG(·): how to aggregate information from neighbors
 Requirement: permutation-invariant
 Common choices: mean, max, sum, etc.

 \square a_{ij} : the importance of neighbors

COMBINE(·): how to update representation
 Common choices: CONCAT, SUM, MLP, etc.

 $\Box \sigma(\cdot)$: Sigmoid, ReLU, tanh, etc.

D Dimensionality of $h_i^{(l)}$, the number of attention heads (when using attention)

Graph Neural Architecture Search, IJCAI 2020.

Туре	Formulation
CONST	$a_{ij}^{\text{const}} = 1$
GCN	$a_{ij}^{\text{gčn}} = \frac{1}{\sqrt{ \mathcal{N}(i) \mathcal{N}(j) }}$
GAT	$a_{ij}^{\text{gat}} = \text{LeakyReLU}(\text{ATT}(\mathbf{W}_{a}[\mathbf{h}_{i},\mathbf{h}_{j}]))$
SYM-GAT	$a_{ij}^{sym} = a_{ij}^{gat} + a_{ji}^{gat}$
COS	$a_{ij}^{\cos} = \cos\left(\mathbf{W}_{a}\mathbf{h}_{i}, \mathbf{W}_{a}\mathbf{h}_{j}\right)$
LINEAR	$a_{ij}^{\text{lin}} = \tanh\left(\operatorname{sum}\left(\mathbf{W}_{a}\mathbf{h}_{i} + \mathbf{W}_{a}\mathbf{h}_{j}\right)\right)$
GENE-LINEAR	$a_{ij}^{\text{gene}} = \tanh\left(\operatorname{sum}\left(\mathbf{W}_{a}\mathbf{h}_{i} + \mathbf{W}_{a}\mathbf{h}_{j}\right)\right)\mathbf{W}_{a}'$

Graph NAS Search Strategy

Most previous general NAS search strategies can be directly applied

 $\mathbf{W} = \mathbf{W} - \nabla_{\mathbf{W}} \mathcal{L}_{train}(\mathbf{W}, \alpha)$

Survey

Automated Machine Learning on Graphs: A Survey

Ziwei Zhang*, Xin Wang* and Wenwu Zhu[†]

Tsinghua University, Beijing, China

zw-zhang16@mails.tsinghua.edu.cn, {xin_wang,wwzhu}@tsinghua.edu.cn

Method	Micro	So Macr	earch sp o Poolii	ace ng HP	Layers	T Nod	asks le Graph	Search Strategy	Performance Estimation	Other Characteristics
GraphNAS [34]	1	1	×	×	Fixed	1	X	RNN controller + RL	-	-
AGNN [43]	1	×	×	×	Fixed	1	×	Self-designed controller + RL	Inherit weights	-
SNAG [44]	1	1	×	×	Fixed	1	X	RNN controller + RL	Inherit weights	Simplify the micro search space
PDNAS [45]	1	1	×	×	Fixed	1	X	Differentiable	Single-path one-shot	-
POSE [46]	1	1	×	×	Fixed	1	×	Differentiable	Single-path one-shot	Support heterogenous graphs
NAS-GNN [47]	1	×	×	1	Fixed	1	X	Evolutionary algorithm	-	-
AutoGraph [48]	1	1	×	×	Various	1	X	Evolutionary algorithm	-	-
GeneticGNN [49]	1	×	×	1	Fixed	1	X	Evolutionary algorithm	-	-
EGAN [50]	1	1	×	×	Fixed	1	1	Differentiable	One-shot	Sample small graphs for efficiency
NAS-GCN [51]	1	1	1	×	Fixed	×	1	Evolutionary algorithm	-	Handle edge features
LPGNAS [52]	1	1	×	×	Fixed	1	X	Differentiable	Single-path one-shot	Search for quantisation options
You et al. [53]	1	1	×	1	Various	1	1	Random search	-	Transfer across datasets and tasks
SAGS [54]	1	×	×	×	Fixed	1	1	Self-designed algorithm	-	-
Peng et al. [55]	1	×	×	×	Fixed	×	1	CEM-RL [56]	-	Search spatial-temporal modules
GNAS[57]	1	1	×	×	Various	1	1	Differentiable	One-shot	-
AutoSTG[58]	×	1	×	×	Fixed	1	×	Differentiable	One-shot+meta learning	Search spatial-temporal modules
DSS[59]	1	1	×	×	Fixed	1	X	Differentiable	One-shot	Dynamically update search space
SANE[60]	1	1	×	×	Fixed	1	X	Differentiable	One-shot	
AutoAttend[61]	1	1	×	×	Fixed	1	1	Evolutionary algorithm	One-shot	Cross-layer attention

Table 1: A summary of different NAS methods for graph machine learnings.

Paper collection: <u>https://github.com/THUMNLab/awesome-auto-graph-learning</u> KDD 2021 Tutorial: <u>https://zw-zhang.github.io/files/2021_KDD_AutoMLonGraph.pdf</u>

Automated Machine Learning on Graphs: A Survey. IJCAI, 2021.

Challenges for the Existing Methods

GraphNAS has many unique and unsolved challenges

Challenge 1: Graph Structure

Graph structure is the key to GraphNAS

Previous works assume fixed structures

 \rightarrow Q1: Is the input graph structure optimal?

 \rightarrow Q2: How to select architectures and graph structures that suit each other?

Challenge: how to model different graph structure in GraphNAS

Analysis

Different operations fit graphs with different amount of information

Theorem 2 Under our synthetic graph setting, let n be the number of edges connected the target node, the relative distance between the centers of two classes is |D|, which follows $D \sim \mathcal{N}(0, \beta^2)$. Then, the probability of that linear operation gives more accurate prediction than GCN on the target node is $P = \Phi[\frac{\sqrt{2n|D|}}{(\delta+1)\sqrt{(n+1)(n+2)}}].$

□ Factors to determine the amount of information: signal to noise ratio

More structural information

Synthetic datasets:

GASSO: Graph Architecture Search with Structure Optimization

Learn graph structure and GNN architecture through a joint optimization scheme

Graph Differentiable Architecture Search with Structure Learning. NeurIPS, 2021.

GASSO: Model

Formulation: bi-level optimization to tri-level optimization

 $\min_{\mathcal{A}} \mathcal{L}_{val}(W^*, \mathcal{A})$ s.t. $W^* = argmin_W \mathbb{E}_{\mathcal{A} \in \Gamma(\mathcal{A})} \mathcal{L}_{train}(W, \mathcal{A}).$

$$\min_{\mathcal{A}} \mathcal{L}_{val}(W^*, \mathcal{A}, G^*)$$

s.t. $G^* = argmin_G \mathcal{L}_s(W^*, \mathcal{A}, G),$

$$W^* = argmin_W \mathbb{E}_{\mathcal{A} \in \Gamma(\mathcal{A})} \mathcal{L}_{train}(W, \mathcal{A}, G)$$

Feature Smoothness Constraint

$$\mathcal{L}_{s} = \lambda \sum_{i,j}^{N} G_{ij} \parallel \mathbf{h}_{i} - \mathbf{h}_{j} \parallel_{2} + \sum_{i,j}^{N} (G_{ij} - G_{o,ij})^{2},$$

Homophily assumption/first-order neighborhood
 Mask original edges: $G = G_o \odot M$

□ Possible extensions: removing edge \rightarrow adding edges □ Challenge: time complexity, there are $O(n^2)$ possible edges

GASSO: Experiments

Experiments on graph benchmarks

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Dataset	Cora	Citeseer	Pubmed
$ \begin{array}{lll} {\rm GAT}^{\dagger} & 87.26 \pm 0.08 & 77.82 \pm 0.11 & 86.83 \pm 0.11 \\ {\rm ARMA}^{\dagger} & 86.06 \pm 0.05 & 76.50 \pm 0.00 & 88.70 \pm 0.24 \\ {\rm DropEdge}^{\dagger} & 87.60 \pm 0.05 & 78.57 \pm 0.00 & 87.34 \pm 0.24 \\ {\rm DARTS} & 86.18 \pm 0.36 & 74.96 \pm 0.10 & 88.38 \pm 0.18 \\ {\rm GDAS} & 85.48 \pm 0.30 & 74.20 \pm 0.11 & 89.50 \pm 0.14 \\ {\rm ASAP} & 85.21 \pm 0.13 & 75.14 \pm 0.09 & 88.65 \pm 0.10 \\ {\rm XNAS} & 86.80 \pm 0.14 & 76.33 \pm 0.09 & 88.61 \pm 0.25 \\ {\rm GraphNAS}^{\ddagger} & 86.83 \pm 0.56 & 79.05 \pm 0.28 & 89.99 \pm 0.43 \\ \end{array} $	GCN^\dagger	87.40	79.20	88.40
$\begin{array}{ccccccc} \text{ARMA}^{\dagger} & 86.06 \pm 0.05 & 76.50 \pm 0.00 & 88.70 \pm 0.24 \\ \text{DropEdge}^{\dagger} & 87.60 \pm 0.05 & 78.57 \pm 0.00 & 87.34 \pm 0.24 \\ \text{DARTS} & 86.18 \pm 0.36 & 74.96 \pm 0.10 & 88.38 \pm 0.18 \\ \text{GDAS} & 85.48 \pm 0.30 & 74.20 \pm 0.11 & 89.50 \pm 0.14 \\ \text{ASAP} & 85.21 \pm 0.13 & 75.14 \pm 0.09 & 88.65 \pm 0.10 \\ \text{XNAS} & 86.80 \pm 0.14 & 76.33 \pm 0.09 & 88.61 \pm 0.25 \\ \text{GraphNAS}^{\ddagger} & 86.83 \pm 0.56 & 79.05 \pm 0.28 & 89.99 \pm 0.43 \\ \end{array}$	\mathbf{GAT}^{\dagger}	87.26 ± 0.08	77.82 ± 0.11	86.83 ± 0.11
$\begin{array}{ccccc} DropEdge^{\dagger} & 87.60 \pm 0.05 & 78.57 \pm 0.00 & 87.34 \pm 0.24 \\ DARTS & 86.18 \pm 0.36 & 74.96 \pm 0.10 & 88.38 \pm 0.18 \\ GDAS & 85.48 \pm 0.30 & 74.20 \pm 0.11 & 89.50 \pm 0.14 \\ ASAP & 85.21 \pm 0.13 & 75.14 \pm 0.09 & 88.65 \pm 0.10 \\ XNAS & 86.80 \pm 0.14 & 76.33 \pm 0.09 & 88.61 \pm 0.25 \\ GraphNAS^{\ddagger} & 86.83 \pm 0.56 & 79.05 \pm 0.28 & 89.99 \pm 0.43 \\ GASSO & {\bf 87.63 \pm 0.29} & {\bf 79.61 \pm 0.32} & {\bf 90.52 \pm 0.24} \\ \end{array}$	$ARMA^{\dagger}$	86.06 ± 0.05	76.50 ± 0.00	88.70 ± 0.24
$\begin{array}{ccccc} \text{DARTS} & 86.18 \pm 0.36 & 74.96 \pm 0.10 & 88.38 \pm 0.18 \\ \text{GDAS} & 85.48 \pm 0.30 & 74.20 \pm 0.11 & 89.50 \pm 0.14 \\ \text{ASAP} & 85.21 \pm 0.13 & 75.14 \pm 0.09 & 88.65 \pm 0.10 \\ \text{XNAS} & 86.80 \pm 0.14 & 76.33 \pm 0.09 & 88.61 \pm 0.25 \\ \text{GraphNAS}^{\ddagger} & 86.83 \pm 0.56 & 79.05 \pm 0.28 & 89.99 \pm 0.43 \\ \end{array}$	DropEdge [†]	87.60 ± 0.05	78.57 ± 0.00	87.34 ± 0.24
GDAS 85.48 ± 0.30 74.20 ± 0.11 89.50 ± 0.14 ASAP 85.21 ± 0.13 75.14 ± 0.09 88.65 ± 0.10 XNAS 86.80 ± 0.14 76.33 ± 0.09 88.61 ± 0.25 GraphNAS [‡] 86.83 ± 0.56 79.05 ± 0.28 89.99 ± 0.43 GASSO 87.63 ± 0.29 79.61 ± 0.32 90.52 ± 0.24	DARTS	86.18 ± 0.36	74.96 ± 0.10	88.38 ± 0.18
ASAP 85.21 ± 0.13 75.14 ± 0.09 88.65 ± 0.10 XNAS 86.80 ± 0.14 76.33 ± 0.09 88.61 ± 0.25 GraphNAS [‡] 86.83 ± 0.56 79.05 ± 0.28 89.99 ± 0.43 GASSO 87.63 ± 0.29 79.61 ± 0.32 90.52 ± 0.24	GDAS	85.48 ± 0.30	74.20 ± 0.11	89.50 ± 0.14
XNAS 86.80 ± 0.14 76.33 ± 0.09 88.61 ± 0.25 GraphNAS [‡] 86.83 ± 0.56 79.05 ± 0.28 89.99 ± 0.43 GASSO 87.63 ± 0.29 79.61 ± 0.32 90.52 ± 0.24	ASAP	85.21 ± 0.13	75.14 ± 0.09	88.65 ± 0.10
GraphNAS [‡] 86.83 ± 0.56 79.05 ± 0.28 89.99 ± 0.43 GASSO 87.63 ± 0.29 79.61 ± 0.32 90.52 ± 0.24	XNAS	86.80 ± 0.14	76.33 ± 0.09	88.61 ± 0.25
$ \text{GASSO} \qquad 87.63 \pm 0.29 79.61 \pm 0.32 90.52 \pm 0.24 \\$	GraphNAS [‡]	86.83 ± 0.56	79.05 ± 0.28	89.99 ± 0.43
	GASSO	87.63 ± 0.29	79.61 ± 0.32	90.52 ± 0.24

Experiments on larger graph datasets

Dataset	Physics	CoraFull	ogbn-arxiv
GCN	95.94	68.08	70.39
GAT	95.86	65.78	68.53
DARTS	95.74	68.51	69.52
GASSO	96.38	68.89	70.52

Dynamic Heterogenous Graphs

Citation network

Finance Graph

Dynamic: structures and features evolve through time
 Heterogeneous: various node and edge types

More complicated structural patterns

How to model the dynamic and heterogenous structure in GraphNAS?

Dynamic Heterogeneous Graph Architecture Search

Automatically tailor an optimal attention-based architecture for dynamic heterogeneous graphs

Dynamic Heterogeneous Graph Attention Neural Architecture Search. AAAI, 2023.

DHGAS: Dynamic Heterogeneous Graph Attention

Goal: capture dynamic heterogenous information through attention

Definition 2 Dynamic Heterogeneous Neighborhood: for the neighborhood of each node u, we use subscripts to denote the relation type and superscripts to denote the time stamp, i.e., $\mathcal{N}_{r}^{t}(u) = \{v : (u, v) \in \mathcal{E}^{t}, \phi_{e}(u, v) = r\}$. With a slight abuse of notations, we use $\mathcal{N}(u)$ to denote all types of neighbors at all time stamps in dynamic heterogeneous graphs, i.e., $\mathcal{N}(u) = \bigcup_{r,t} \mathcal{N}_r^t(u)$.

□ Time/type-aware node mapping functions

□ Time/type-aware relation mapping functions

Update with time/type-aware attention

$$\mathbf{h}_{u}^{t} \leftarrow \text{Update}(\mathbf{h}_{u}^{t}, \sum_{v \in \mathcal{N}(u)} \hat{\alpha}_{u,v} \mathbf{v}_{v}^{t'})),$$
$$\hat{\alpha}_{u,v} = \frac{\exp(\alpha_{u,v})}{\sum_{v' \in \mathcal{N}(u)} \exp(\alpha_{u,v'})}.$$

 $\Gamma^{\alpha_{u,v}} = \mathcal{F}^{R}_{\phi_{e}(u,v),\Delta t}(\mathbf{q}^{t}_{u}, \mathbf{k}^{t'}_{v}),$

 $\begin{aligned} \mathbf{q}_{u}^{t} &= \mathcal{F}_{q,\phi_{n}(u),t}^{N}(\mathbf{h}_{u}^{t}), \\ \mathbf{k}_{v}^{t'} &= \mathcal{F}_{k,\phi_{n}(v),t'}^{N}(\mathbf{h}_{v}^{t'}), \\ \mathbf{v}_{v}^{t'} &= \mathcal{F}_{v,\phi_{n}(v),t'}^{N}(\mathbf{h}_{v}^{t'}), \end{aligned}$

Unified Dynamic Heterogeneous **Graph Attention**

DHGAS: Attention Parameterization and Localization Space

□ Goal: a concise yet expressive search space based on attention

Dynamic Heterogeneous Graph Dynamic Heterogeneous Graph Attention Search

Unified Dynamic Heterogeneous Graph Attention

Parameterization Space: how to parameterize attention

 $\mathcal{A}^{Pa} = \mathcal{A}^N \times \mathcal{A}^R \qquad \mathcal{A}^N = \{1, ..., K_N\}^{T \times |\mathcal{C}_n|} \qquad \mathcal{A}^R = \{1, ..., K_R\}^{2T \times |\mathcal{C}_e|}$

Localization Space: Locate where to apply attention \$\mathcal{A}^{Lo} = \{0,1\}^{T \times T \times |\mathcal{C}_e|}\$
 Cover many classic GNNs as special cases: GCN, GAT, type-aware MLP, HGT(WWW20), DyHATR(ECML20), HTGNN(SDM22), etc.

DHGAS: Multi-Stage Differentiable Architecture Search

DHGAS: Experiments

Task	Link Pr	ediction	Node Clas	ssification	Node Regression
Metric	(AUC	∑%)↑	(F1 ^e	‰)↑	$(MAE)\downarrow$
Dataset	Aminer	Ecomm	Yelp	Drugs	COVID-19
GCN	73.84 ± 0.06	77.94 ± 0.22	37.02 ± 0.00	56.43 ± 0.21	846 ± 101
GAT	80.84 ± 0.96	78.49 ± 0.31	35.54 ± 0.00	57.06 ± 0.00	821 ± 91
RGCN	82.75 ± 0.12	$\underline{82.27 \pm 0.51}$	37.75 ± 0.00	57.97 ± 0.14	833 ± 95
HGT	78.43 ± 1.81	$\overline{81.09\pm0.52}$	34.62 ± 0.00	57.65 ± 0.01	805 ± 88
DyHATR	74.24 ± 2.09	71.69 ± 0.90	34.49 ± 0.16	55.51 ± 0.09	643 ± 36
HGT+	85.60 ± 0.12	76.68 ± 0.85	38.33 ± 0.00	59.09 ± 0.00	-
HTGNN	$\overline{78.08\pm0.80}$	76.78 ± 6.37	36.33 ± 0.07	$\overline{56.24\pm0.34}$	555 ± 34
GraphNAS	81.61 ± 0.98	79.37 ± 0.21	37.73 ± 0.00	57.13 ± 0.52	$\overline{820\pm43}$
DiffMG	85.04 ± 0.30	81.69 ± 0.06	$\underline{38.65\pm0.00}$	58.45 ± 0.15	629 ± 63
DHGAS	$\textbf{88.13} \pm \textbf{0.18}$	$\textbf{86.56} \pm \textbf{0.58}$	$\textbf{41.99} \pm \textbf{0.18}$	$\textbf{62.35} \pm \textbf{0.03}$	536 ± 43

Significantly outperforms baselines for various downstream tasks

DHGAS: Experiments

Jointly modeling dynamic and heterogeneous information

Tailor optimal attention mechanisms for different datasets

Challenge 2: Large-scale Graphs

Social Networks

WeChat: 1.29 billion monthly active users (Aug 2022)
 Facebook: 2.8 billion active users (2020)

E-commerce Networks

Millions of sellers, about 0.9 billion buyers, 10.6 trillion turnovers in China (2019)

Citation Networks

131 million authors, 185 million publications, 754 million citations (Aminer, Aug 2022)

Challenge: how to efficiently scale to billion-scale graphs

SuperNet Training

□ Supernet: combine all possible operations of the search space

□ Trained by sampling architectures and back-propagations
 □ Supernet training for large-scale graphs:
 □ Using the whole graph → computational bottleneck
 □ Straight-forwardly sampling subgraphs → consistency issue

GAUSS: Large-scale Graph NAS

Jointly sample subgraphs and architectures to find the most suitable architecture

Large-scale Graph Neural Architecture Search. ICML, 2022.

»DataFun²⁸ GAUSS: Architecture Peer Learning on Graph

□ Goal: smooth the optimization objective □ Assumption: "senior students" can teach "junior students" □ Method: assign weights to different samples, gradually progress from easier parts to difficult parts $\hat{\mathcal{L}} = \mathbb{E}_{T \in \mathcal{A}^n, \mathcal{G}_s \sim \pi(\mathcal{G})} \mathbb{E}_{a \in T, v \in \mathcal{V}_s} \alpha_v \mathcal{L}(a, \mathcal{G}_s, v)}$

 $\hat{a} = \operatorname{argmax}_{a \in T} \operatorname{Acc}_{\operatorname{train}}(a, \mathcal{G}_s)$

 $\alpha_t = \alpha_{min} \times \left(1 - \frac{1}{T_{tota}}\right)$

 \overline{T}_{total}

GAUSS: Experiments

DATASET	#Nodes	#Edges	
CS	18,333	81,894	
PHYSICS	34,493	247,962	
Arxiv	169,343	1,166,243	1000
PRODUCTS	2,449,029	61,859,140)x1000
PAPERS100M	111,059,956	1,615,685,872	

Table 2. The results of our proposed method and baseline methods. We report both the validation and test accuracy [%] over 10 runs with different seeds. OOT means out-of-time (cannot converge within 1 single GPU day), while OOM means out-of-memory (cannot run on a Tesla V100 GPU with 32GB memory). The results of the best hand-crafted and automated method are in bold, respectively.

Methods	C	CS	Phy	sics	Ar	xiv	Proc	lucts	Papers	s100M
	valid	test	valid	test	valid	test	valid	test	valid	test
GCN	94.10 _{0.21}	93.98 _{0.21}	96.29 _{0.05}	96.380.07	72.760.15	71.70 _{0.18}	91.75 _{0.04}	80.190.46	70.320.11	67.060.17
GAT	$93.74_{0.27}$	$93.48_{0.36}$	$96.25_{0.23}$	$96.37_{0.23}$	$73.19_{0.12}$	$71.85_{0.21}$	$90.75_{0.16}$	$80.59_{0.40}$	$70.26_{0.16}$	67.260.06
SAGE	$95.65_{0.07}$	$95.33_{0.11}$	$96.76_{0.10}$	$96.72_{0.07}$	$73.11_{0.08}$	$71.78_{0.15}$	$91.75_{0.04}$	$80.19_{0.46}$	$70.32_{0.11}$	$67.06_{0.17}$
GIN	92.00 _{0.43}	$92.14_{0.34}$	$96.03_{0.11}$	$96.04_{0.15}$	$71.16_{0.10}$	$70.01_{0.33}$	$91.58_{0.10}$	$79.07_{0.52}$	$68.98_{0.16}$	65.78 _{0.09}
GraphNAS	94.90 _{0.14}	94.67 _{0.23}	96.76 _{0.10}	96.72 _{0.07}	72.760.15	71.70 _{0.18}	OOT	OOT	OOT	TOO
SGAS	$95.62_{0.06}$	$95.44_{0.06}$	$96.44_{0.10}$	$96.50_{0.11}$	$72.38_{0.11}$	$71.34_{0.25}$	OOM	OOM	OOM	OOM
DARTS	$95.62_{0.06}$	$95.44_{0.06}$	$96.21_{0.16}$	$96.40_{0.21}$	$73.43_{0.07}$	$72.10_{0.25}$	OOM	OOM	OOM	OOM
EGAN	$95.60_{0.10}$	$95.43_{0.05}$	$96.39_{0.18}$	$96.45_{0.19}$	$72.91_{0.25}$	$71.75_{0.35}$	OOM	OOM	OOM	OOM
Basic	95.13 _{0.07}	95.45 _{0.05}	96.25 _{0.06}	96.53 _{0.09}	73.280.08	72.060 33	91.79 0 11	80.560 39	69.49 _{0 37}	66.24 _{0.46}
GAUSS	$96.08_{0.11}$	96.49 _{0.11}	96.79 _{0.06}	96.7 6 _{0.08}	$73.63_{0.10}$	$\textbf{72.3}\overline{\textbf{5}}_{0.21}$	$91.60_{0.12}$	$81.26_{0.36}$	$70.57_{0.07}$	67.32 _{0.18}

Can process billion-scale graphs using single GPU

Challenge 3: Robustness

Distribution shifts

Searching a fixed architecture may fail to generalize

8 Predicted as: 8 Predicted as: 8

Greatly affects risk-sensitive applications

Fraud Detection

Cyber security

. . .

GRACES: Graph NAS under Distribution Shifts

Customize a unique GNN architecture for each graph instance to handle distribution shifts

Graph Neural Architecture Search under Distribution Shifts. ICML, 2022.

GRACES: Graph Encoder

Goal: learn a vector representation for each graph to reflect its characteristics **Challenge**: preserve diverse properties of the original graph □ Method: self-supervised disentangled graph encoder Encoder: disentangled GNN $\mathbf{H}^{(l)} = \| \operatorname{GNN}(\mathbf{H}_k^{(l-1)}, \mathbf{A})$ Supervised loss: the downstream task $\mathcal{L}_{sup} = \sum_{i=1}^{N_{tr}} \ell\left(\mathcal{C}\left(\mathbf{h}_{i}\right), y_{i}\right) \quad \mathcal{L}_{ssl} = \sum_{i=1}^{N_{tr}} \sum_{k=1}^{K-1} \ell_{ssl}\left(\hat{y}_{i,k}^{ssl}, y_{i,k}^{ssl}\right)$

Self-supervised loss: node degree as regularization

GRACES: Architecture Customization

Goal: customize an architecture based on the graph representation **D** Assumption: graphs with similar characteristics need similar architectures □ Method: prototype based architecture customization $\hat{p}_o^i = \mathbf{h} \cdot \frac{\mathbf{q}_o^i}{\|\mathbf{q}_o^i\|_2}, p_o^i = \frac{\exp\left(\hat{p}_o^i\right)}{\sum_{o' \in \mathcal{O}} \exp\left(\hat{p}_{o'}^i\right)}$ ■ Probabilities of choosing operations:

■ Regularizer to avoid mode collapse:

GRACES: Learning Architecture Parameters

□ Goal: learn parameters for the customized architectures □ Method: customized super-network $f^i(\mathbf{x}) = \sum_{o \in \mathcal{O}} p_o^i o(\mathbf{x})$ □ Loss functions:

$$\mathcal{L} = \gamma \mathcal{L}_{main} + (1 - \gamma) \mathcal{L}_{reg}$$
$$\mathcal{L}_{reg} = \mathcal{L}_{sup} + \beta_1 \mathcal{L}_{ssl} + \beta_2 \mathcal{L}_{cos}$$

GRACES: Experiments

		0 = 0.0	0 = 0.9	dataset	hiv	sider	bace
GCN GAT GIN SAGE GraphConv MLP ASAP DIR	$\begin{array}{c} 48.39 \pm 1.69 \\ 50.75 \pm 4.89 \\ 36.83 \pm 5.49 \\ 46.66 \pm 2.51 \\ 47.29 \pm 1.95 \\ 48.27 \pm 1.27 \\ 54.07 \pm 13.85 \\ 50.08 \pm 3.46 \end{array}$	$\begin{array}{c} 41.55 \pm 3.88 \\ 42.48 \pm 2.46 \\ 34.83 \pm 3.10 \\ 44.50 \pm 5.79 \\ 44.67 \pm 5.88 \\ 46.73 \pm 3.48 \\ 48.32 \pm 12.72 \\ 48.22 \pm 6.27 \end{array}$	$\begin{array}{c} 39.13 \pm 1.76 \\ 40.10 \pm 5.19 \\ 37.45 \pm 3.59 \\ 44.79 \pm 4.83 \\ 44.82 \pm 4.84 \\ 46.41 \pm 2.34 \\ 43.52 \pm 8.41 \\ 43.11 \pm 5.43 \end{array}$	GCN GAT GIN SAGE GraphConv MLP ASAP DIR	$\begin{array}{c} 75.99 \pm 1.19 \\ 76.80 \pm 0.58 \\ 77.07 \pm 1.49 \\ 75.58 \pm 1.40 \\ 74.46 \pm 0.86 \\ 70.88 \pm 0.83 \\ 73.81 \pm 1.17 \\ 77.05 \pm 0.57 \end{array}$	$\begin{array}{c} 59.84_{\pm 1.54} \\ 57.40_{\pm 2.01} \\ 57.57_{\pm 1.56} \\ 56.36_{\pm 1.32} \\ 56.09_{\pm 1.06} \\ 58.16_{\pm 1.41} \\ 55.77_{\pm 1.18} \\ 57.34_{\pm 0.36} \end{array}$	$\begin{array}{c} 68.93 \pm 6.95 \\ 75.34 \pm 2.36 \\ 73.46 \pm 5.24 \\ 74.85 \pm 2.74 \\ 78.87 \pm 1.74 \\ 71.60 \pm 2.30 \\ 71.55 \pm 2.74 \\ 76.03 \pm 2.20 \end{array}$
random DARTS GNAS PAS	$\begin{array}{c} 45.92_{\pm 4.29} \\ 50.63_{\pm 8.90} \\ 55.18_{\pm 18.62} \\ 52.15_{\pm 4.35} \end{array}$	$\begin{array}{c} 51.72 {\scriptstyle \pm 5.38} \\ 45.41 {\scriptstyle \pm 7.71} \\ 51.64 {\scriptstyle \pm 19.22} \\ 43.12 {\scriptstyle \pm 5.95} \end{array}$	$\begin{array}{c} 45.89_{\pm 5.09} \\ 44.44_{\pm 4.42} \\ 37.56_{\pm 5.43} \\ 39.84_{\pm 1.67} \end{array}$	DARTS PAS GRACES	$74.04_{\pm 1.75}$ $71.19_{\pm 2.28}$ $77.31_{\pm 1.00}$	$\begin{array}{c} 60.64_{\pm 1.37} \\ 59.31_{\pm 1.48} \\ 61.85_{\pm 2.56} \end{array}$	$76.71_{\pm 1.83}$ $76.59_{\pm 1.87}$ $79.46_{\pm 3.04}$
GRACES	$65.72_{\pm 17.47}$	$59.57_{\pm 17.37}$	$50.94_{\pm 8.14}$		1.00	100	10.01
L		1 j 2 3			1- 2- 3-		- 0.4 - 0.3 - 0.2 - 0.1
sage gcn ga	at gin graphconv	mlp sage	e gcn gat	gin graphconv mlp	sage go	n gat gin gra	phconv mlp

Customization of architectures

SataFun³⁶ Robust Graph Neural Architecture Search

Robust search space and robustness-aware search strategy of GraphNAS

Adversarially Robust Neural Architecture Search for Graph Neural Networks. CVPR, 2023.

G-RNA: Robust Search Space

Goal: remove noises in the structure

Method: graph structure mask

$$\mathbf{h}_{i}^{(l)} = \sigma \left(\mathbf{W}^{(l)} \operatorname{Comb} \left(\mathbf{h}_{i}^{(l-1)}, \operatorname{Aggr}(m_{ij}^{(l)} e_{ij}^{(l)} \mathbf{h}_{j}^{(l-1)}, j \in \tilde{\mathcal{N}}(i)) \right) \right)$$

G-RNA: Robustness Metric

□ Goal: consider robustness during search process

Method: robustness metric

$$\mathcal{R}(\mathbf{A}, f) = -\mathbb{E}_{\mathbf{A}'}\left[\frac{1}{N}\sum_{i=1}^{N} D_{KL}\left(f(\mathbf{A})_{i}||f(\mathbf{A}')_{i}\right)\right], \mathbf{A}' = \mathcal{T}_{\Delta}(\mathbf{A})$$

G-RNA: Experimental Results

Non-targeted attack

Dataset	Model			Proportion of changed edges (%)							
	-		0	5	10	15	20	25			
		GCN	86.35±0.15	82.70±0.13	80.56±0.16	77.85±0.17	75.85±0.18	73.68±0.22			
	Verille CNN	GCN-JK	87.07±0.12	82.76±0.15	81.56±0.18	80.22±0.38	79.14±0.44	77.31±0.24			
	vanilla GINN	GAT	85.28±0.20	81.02±0.31	79.58±0.16	76.39±0.43	74.41±0.20	72.22±0.24			
_		GAT-JK	85.72±0.14	82.37±0.10	80.60±0.23	78.50±0.15	76.39±0.14	74.02±0.25			
		RGCN	86.64±0.08	82.90±0.18	80.73±0.19	77.86±0.17	75.89±0.15	73.74±0.22			
D 11(1		GCN-Jaccard	87.11±0.04	83.95±0.06	82.30±0.08	80.16±0.07	78.83±0.13	76.86±0.17			
PubMed	Robust GNN	Pro-GNN	-	-	-	-	-	-			
		PTDNet	83.87±0.24	74.32±0.44	68.80±0.34	67.32±0.18	66.50±0.12	65.21±0.34			
		DropEdge	83.93±0.10	83.24±0.12	82.33±0.15	81.06±0.18	79.21±0.14	76.88±0.28			
		GraphNAS	87.26±0.04	83.56±0.08	80.00±3.98	77.86±2.59	72.97±3.88	68.05±2.26			
	Creek NAS	GASSO	86.27±0.12	84.15±0.15	83.18±0.21	82.56±0.25	81.73±0.36	83.25±1.26			
	Graph NAS	G-RNA w/o rob	87.18±0.07	82.59±0.14	80.29±0.17	78.11±0.24	75.98±0.33	73.60±0.25			
		G-RNA	87.48±0.12	87.01±0.11	86.5±0.14	86.04±0.21	85.94±0.18	85.82±0.12			

However, there is no automated graph machine learning library yet!

Introduction – AutoGL

□ We design an autoML framework & toolkit for machine learning on graphs

Overall Framework

Modular Design

□ Key modules:

AutoGL Dataset: manage graph datasets
 AutoGL Solver: a high-level API to control the overall pipeline
 Five functional modules:

 Auto Feature Engineering
 Neural Architecture Search
 Hyper-parameter Optimization
 Model Training
 Auto Ensemble

AutoGL Roadmap

□ Team member (~10)

Architect: Chaoyu Guan (v0.1-v0.3), Yijian Qin (v0.4-v0.5)
 Programmer: Haoyang Li, Zeyang Zhang, Heng Chang, Zixin Sun, Beini Xie, Jie Cai, Zizhao Zhang, Jiyan Jiang, Yao Yang, Yipeng Zhang

Media Coverage

The Evaluation of Graph NAS Methods

How to properly evaluate different GraphNAS algorithms

□ Incomparable and irreproducible results

Computationally expensive

□ Diverse evaluation protocols

NAS-Bench-Graph

The first tabular NAS benchmark for GraphNAS Unified, Reproducible, Efficient Provide detailed metrics of all architectures (exhaust 8,000 GPU hours)

Benchmark	Туре	Search Space	Data	Datasets	
NAS-Bench-101 [17]	Tabular	423k	CV	1	
NAS-Bench-201 [4]	Tabular	6k	CV	3	
NAS-Bench-1shot1 [19]	Tabular	364k	CV	1	
NAS-Bench-ASR [12]	Tabular	8k	Acoustics	1	
NAS-Bench-NLP [9]	Tabular	14k	NLP	2	
HW-NAS-Bench [10]	Tabular	6k	CV	3	
NATS-Bench 3	Tabular	32k	CV	3	
NAs-HPO-Bench-II [7]	Surrogate	192k	CV	1	
NAS-Bench-MR [2]	Surrogate	10^{23}	CV	4	
TransNAS-Bench [5]	Tabular	7k	CV	14	
NAS-Bench-111 [16]	Surrogate	423k	CV	1	
NAS-Bench-311 [16]	Surrogate	10^{18}	CV	1	
NAS-Bench-Zero [1]	Tabular	34k	CV	3	
Surr-NAS-Bench-FBNet [20]	Surrogate	10^{21}	CV	2	
NAS-Bench-Graph	Tabular	26k	Graph	9	

NAS-Bench-Graph: Benchmarking Graph Neural Architecture Search. NeurIPS, 2022.

NAS-Bench-Graph: Designs

□ Search space:

□ Macro space:

26,206 architectures cover representative GNNs

Operations: GCN, GAT, GraphSAGE, GIN, ARMA, k-GNN, MLP

Datasets:

Dataset	#Vertices	#Links	#Features	#Classes	Metric
Cora	2,708	5,429	1,433	7	Accuracy
CiteSeer	3,327	4,732	3,703	6	Accuracy
PubMed	19,717	44,338	500	3	Accuracy
Coauthor-CS	18,333	81,894	6,805	15	Accuracy
Coauthor-Physics	34,493	247,962	8,415	5	Accuracy
Amazon-Photo	7,487	119,043	745	8	Accuracy
Amazon-Computers	13,381	245,778	767	10	Accuracy
ogbn-arxiv	169,343	1,166,243	128	40	Accuracy
ogbn-proteins	132,534	39,561,252	8	112	ROC-AUC

9 datasets different sizes/domains

NAS-Bench-Graph: Usage

Integrated with two representative libraries: AutoGL and NNI

Library	Method	Cora	CiteSeer	PubMed	CS	Physics	Photo	Computers	arXiv	proteins
AutoGL	GNAS Auto-GNN	$\begin{array}{c} 82.04_{0.17} \\ 81.80_{0.00} \end{array}$	70.89 _{0.16} 70.76 _{0.12}	77.79 _{0.02} 77.69 _{0.16}	90.97 _{0.06} 91.04 _{0.04}	$92.43_{0.04} \\ 92.42_{0.16}$	$\begin{array}{c} 92.43_{0.03} \\ 92.38_{0.01} \end{array}$	$\begin{array}{c} 84.74_{0.20} \\ 84.53_{0.14} \end{array}$	$72.00_{0.02} \\ 72.13_{0.03}$	78.71 _{0.11} 78.54 _{0.30}
NNI	Random EA RL	82.09 _{0.08} 81.85 _{0.20} 82.27 _{0.21}	$70.49_{0.08} \\ 70.48_{0.12} \\ 70.66_{0.12}$	77.91 _{0.07} 77.96 _{0.12} 77.96 _{0.09}	$\begin{array}{c} 90.93_{0.07} \\ 90.60_{0.07} \\ 90.98_{0.01} \end{array}$	92.35 _{0.05} 92.22 _{0.08} 92.48 _{0.03}	$\begin{array}{c} \textbf{92.44}_{0.02} \\ \textbf{92.43}_{0.02} \\ \textbf{92.42}_{0.06} \end{array}$	84.78 _{0.14} 84.29 _{0.29} 84.90 _{0.19}	$72.04_{0.05} \\ 71.91_{0.06} \\ \textbf{72.13}_{0.05}$	$78.32_{0.14} \\ 77.93_{0.21} \\ 78.52_{0.18}$
The	top 5%	80.63	69.07	76.60	90.01	91.67	91.57	82.77	71.69	78.37

D Example: ~10 lines of codes

from readbench import re	ad
<pre>bench = read('cora0.benc</pre>	ch') # dataset and seed
info = bench[arch.valid_	hash()]
epoch = 50	
info['dur'][epoch][0]	<i># training performance</i>
info['dur'][epoch][1]	# validation performance
info['dur'][epoch][2]	# testing performance
info['dur'][epoch][3]	# training loss
info['dur'][epoch][4]	# validation loss
info['dur'][epoch][5]	# testing loss
info['dur'][epoch][6]	# best performance

□ Open source: <u>https://github.com/THUMNLab/NAS-Bench-Graph</u>

NAS-Bench-Graph: Analysis

Performance distribution

Architecture distribution & Correlation

Architecture space smoothness

Influence of operations at different depth

Recap: Our Recent Works on GraphNAS

⇒DataFun⁵¹

Acknowledgements

Wenwu Zhu Tsinghua Univ.

Chaoyu GuanYijian QinXin WangBeini XieZeyang ZhangTsinghua Univ.Tsinghua Univ.Tsinghua Univ.Tsinghua Univ.Tsinghua Univ.

THANK YOU!

https://zw-zhang.github.io zwzhang@tsinghua.edu.cn