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Abstract

Dynamic heterogeneous graph neural networks (DHGNNs)
have been shown to be effective in handling the ubiqui-
tous dynamic heterogeneous graphs. However, the exist-
ing DHGNNs are hand-designed, requiring extensive human
efforts and failing to adapt to diverse dynamic heteroge-
neous graph scenarios. In this paper, we propose to auto-
mate the design of DHGNN, which faces two major chal-
lenges: 1) how to design the search space to jointly consider
the spatial-temporal dependencies and heterogeneous inter-
actions in graphs; 2) how to design an efficient search al-
gorithm in the potentially large and complex search space.
To tackle these challenges, we propose a novel Dynamic
Heterogeneous Graph Attention Search (DHGAS) method.
Our proposed method can automatically discover the optimal
DHGNN architecture and adapt to various dynamic hetero-
geneous graph scenarios without human guidance. In par-
ticular, we first propose a unified dynamic heterogeneous
graph attention (DHGA) framework, which enables each
node to jointly attend its heterogeneous and dynamic neigh-
bors. Based on the framework, we design a localization space
to determine where the attention should be applied and a pa-
rameterization space to determine how the attention should
be parameterized. Lastly, we design a multi-stage differen-
tiable search algorithm to efficiently explore the search space.
Extensive experiments on real-world dynamic heterogeneous
graph datasets demonstrate that our proposed method signifi-
cantly outperforms state-of-the-art baselines for tasks includ-
ing link prediction, node classification and node regression.
To the best of our knowledge, DHGAS is the first dynamic
heterogeneous graph neural architecture search method.

1 Introduction
Dynamic heterogeneous graphs are ubiquitous in real-world
applications, including social networks, e-commerce net-
works, academic citation networks, etc. Compared to static
homogeneous graphs, dynamic heterogeneous graphs con-
tain richer heterogeneous information represented as node
and edge types, and dynamic information like evolving
graph structures over time. The modeling of heterogeneity
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and temporal evolutionary patterns is critical for applica-
tions of dynamic heterogeneous graphs including the pre-
diction of future links, node labels and properties.

Dynamic heterogeneous graph neural networks
(DHGNNs) (Hu et al. 2020; Fan et al. 2022; Xue et al.
2020; Li et al. 2020) have recently achieved remarkable
progress in mining graph dynamic and heterogeneous
information (Huang et al. 2021; Fan et al. 2021; Luo et al.
2020). Despite their success, the existing DHGNNs are all
manually designed and therefore suffer from the following
problems: (1) The designs of DHGNN architectures require
extensive human endeavors and expert knowledge. (2)
Since the hand-designed models have a fixed architecture,
they are unable to adapt to diverse dynamic heterogeneous
graph scenarios. (3) The existing DHGNN architectures
consider the heterogeneous and dynamic information rather
separately and fail to optimally model the joint and complex
interaction of heterogeneous and dynamic information.

In this paper, we propose to automate the design of
DHGNN architectures on dynamic heterogeneous graphs
using neural architecture search (NAS). NAS has attracted
considerable attention in automated machine learning and
has shown success in domains including computer vi-
sion (Wistuba, Rawat, and Pedapati 2019; Elsken, Metzen,
and Hutter 2019). However, tailoring a NAS method for dy-
namic heterogeneous graphs is non-trivial and faces the fol-
lowing two challenges:

• How to design the suitable search space to jointly con-
sider the complex spatial-temporal dependencies and
heterogeneous interactions in graphs?

• How to design a tailored efficient search algorithm in the
potentially large and complex search space for dynamic
heterogeneous graphs?

To tackle these challenges, we propose a novel Dynamic
Heterogeneous Graph Attention Search (DHGAS) method.
Our proposed method can automatically tailor an optimal
DHGNN architecture and adapt to various dynamic het-
erogeneous graph scenarios. In particular, we first propose
a unified dynamic heterogeneous graph attention (DHGA)
framework. We enable the model to simultaneously con-
sider heterogeneous neighbors across different time stamps
by extending the classic neighborhood to dynamic heteroge-
neous neighborhood and applying attention to the neighbor-



hood with node and edge type-aware parameterizations. Sec-
ond, we propose a localization and parameterization search
space based on the DHGA framework. Localization space
determines what relation types and time stamps should we
apply attentions to, which can customize the connections
in dynamic heterogeneous neighborhood. Parameterization
space further determines the functions for calculating atten-
tions and what types of nodes and edges and time stamps
should share the same parameterization, which can cus-
tomize the mapping functions in dynamic heterogeneous
neighborhood. We show that our proposed search space is
general and flexible, and can cover many classic DHGNN
architectures as special cases. Besides, it also permits the
search algorithm to make a trade-off between performance
and computational resources. Lastly, we propose a multi-
stage differentiable search algorithm to efficiently explore
the search space. By relaxing the discrete choices to con-
tinuous ones in the localization and parameterization space,
our proposed method can jointly optimize the architecture
choices and the supernet weights in a differentiable manner,
providing fast and accurate performance estimation of ar-
chitecture candidates. To stabilize the training process, we
further propose to train the supernet in a multi-stage manner
and search the spaces sequentially based on the stage.

Extensive experiments on 5 real-world dynamic heteroge-
neous graph datasets demonstrate that our proposed method
significantly outperforms manually designed and automated
state-of-the-art baselines for tasks including link predic-
tion, node classification, and node regression. Detailed abla-
tion studies further verify the effectiveness of our proposed
search space and search strategy. The codes are publicly
available1.

In summary, the contributions of our work are as follows:
• We propose Dynamic Heterogeneous Graph Attention

Search (DHGAS) method for dynamic heterogeneous
graphs. To the best of our knowledge, DHGAS is the first
dynamic heterogeneous graph neural architecture search
method.

• We design a localization space and a parameterization
space for dynamic heterogeneous graphs based on our
unified dynamic heterogeneous graph attention frame-
work. We show that our proposed space covers represen-
tative manually designed architectures as special cases.

• We propose a multi-stage differentiable search algorithm
for dynamic heterogeneous graphs which can explore
our proposed search space effectively and efficiently.

• Extensive experiments on real-world datasets demon-
strate the superiority of our method over state-of-the-art
manually designed and automated baselines.

2 Notations and Preliminaries
2.1 Dynamic Heterogeneous Graphs
Consider a graph G with the node set V and the edge set
E . Nodes are associated with a type mapping function ϕn :
V → Cn and edges are associated with a type mapping func-
tion ϕe : E → Ce, where Cn and Ce denote the node type set

1https://github.com/wondergo2017/DHGAS

and the edge type set, respectively. We give a formal defini-
tion for dynamic heterogeneous graphs as follows:

Definition 1 A dynamic heterogeneous graph is defined as
G = ({Gt}Tt=1, ϕn, ϕe), where T is the number of time
stamps, Gt = (Vt, Et) is the graph slice at time stamp t,
V =

⋃T
t=1 Vt, E =

⋃T
t=1 Et, and |Cn|+ |Ce| ≥ 2.

Dynamic heterogeneous graphs are rather general data for-
mats to represent relational data in real-world applications.
For example, static graphs and homogeneous graphs can be
considered special cases of dynamic heterogeneous graphs
by setting T = 1 and |Cn|+ |Ce| = 2, respectively.

2.2 Dynamic Heterogeneous Graph Neural
Networks

Generally, GNNs follow a message-passing mechanism
(Gilmer et al. 2017; Hamilton, Ying, and Leskovec 2017)
that each node aggregates information from its neigh-
bors. Specifically, let hu be the representation of node u.
Message-passing GNNs update the node representation by2

hu ← Update (hu,Agg({Msg(hv) : v ∈ N (u)}) , (1)

where N (u) = {v : (u, v) ∈ E} denotes the neighborhood
of the node u, Msg(·) extracts information from the neigh-
bor node v ∈ N(u), Agg(·) aggregates the neighborhood
information, and Update(·) updates the node representation.
Heterogeneous GNNs further consider the heterogeneity of
graphs by differentiating node and edge types and assign-
ing different parameters for Msg(·), Agg(·) and Update(·)
functions. The message-passing function is:

hu ← Updateϕ(u)(hu,Aggr({Msgr(hv) : v ∈ Nr(u), r ∈ Ce}),
(2)

where Nr(u) = {v : (u, v) ∈ E ∧ ϕe(u, v) = r} is the
neighborhood of node u with the relation type r.

DHGNNs further explore the temporal information in dy-
namic graphs based on Eq. (2). For example, relative time
encoding (Hu et al. 2020) encodes time information into
edges, i.e., E ′ = Encode({Et}Tt=1) followed by hetero-
geneous message-passings. Another category of DHGNNs
adopt sequence-based models to aggregate information from
different time slices, i.e., H = Seq({Ht}Tt=1), where Ht de-
notes the node representations at time stamp t and H is the
final node representation. Clearly, these existing approaches
handle heterogeneous and dynamic information rather sepa-
rately in a fixed form. In comparison, our proposed method
can jointly aggregate spatial-temporal heterogeneous infor-
mation and automatically adapt to diverse dynamic hetero-
geneous graph scenarios.

2.3 Neural Architecture Search
Neural architecture search (NAS) aims at automating the de-
sign of neural architectures, which can be formulated as a
bi-level optimization problem (Elsken, Metzen, and Hutter

2To simplify notations, we omit the layer superscript and use
arrows to show the message-passing functions in each layer. We
also omit edge features, which can be easily incorporated.
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Figure 1: The framework of our proposed dynamic heterogeneous graph attention search (DHGAS) model. For a given dynamic
heterogeneous graph with multiple node and edge types and time slices, DHGAS can tailor an optimal architecture based on
the unified Dynamic Heterogeneous Graph Attention (DHGA) framework. In particular, DHGAS conducts a multi-stage differ-
entiable architecture search on the attention parameterization space and the attention localization space with several carefully
designed constraints. In the localization space, we search for what types of edges and which time stamps the attention should
be calculated. In the parameterization space, we search for how the attention functions should be parameterized.

2019; Wistuba, Rawat, and Pedapati 2019):

a∗ = argmin
a∈A

Lval(a,w
∗(a)),

s.t. w∗(a) = argmin
w∈W(a)

Ltrain(a,w),
(3)

where A is the architecture search space, W(a) is the pa-
rameter space for a given architecture a, and w∗(a) are the
optimal weights for the architecture a. In this paper, we tailor
a search space, including attention localization and parame-
terization, and a multi-stage differentiable search algorithm
for dynamic heterogeneous graphs.

3 The Proposed Method
3.1 Dynamic Heterogeneous Graph Attention
The key idea of our proposed dynamic heterogeneous
graph attention (DHGA) framework is to unify the spatial-
temporal aggregation and jointly integrate dynamic and
heterogeneous information from neighborhoods by an
attention-based message-passing mechanism. We first ex-
tend the neighborhood definition.
Definition 2 Dynamic Heterogeneous Neighborhood: for
the neighborhood of each node u, we use subscripts to de-
note the relation type and superscripts to denote the time
stamp, i.e., N t

r (u) = {v : (u, v) ∈ Et, ϕe(u, v) = r}. With
a slight abuse of notations, we use N (u) to denote all types
of neighbors at all time stamps in dynamic heterogeneous
graphs, i.e., N (u) =

⋃
r,tN t

r (u).

Next, we introduce our tailored message-passing framework
to capture the dynamic heterogeneous neighborhood infor-
mation to update node representations. Following the atten-
tion mechanism (Vaswani et al. 2017), for a node u in the
time stamp t and its neighbor v ∈ N t′

r (u), we calculate the
Query-Key-Value vector using a set of mapping functions:

qt
u = FN

q,ϕn(u),t
(ht

u), (4)

kt′

v = FN
k,ϕn(v),t′

(ht′

v ), (5)

vt′

v = FN
v,ϕn(v),t′

(ht′

v ), (6)

where ht
u denotes the representation of node u at the time

stamp t, q, k, v represents the query, key and value vec-
tor, respectively, and FN

q (·), FN
k (·), FN

v (·) denote the
corresponding node mapping functions. In this paper, we
adopt small fully-connected neural networks to instantiate
allFN (·). Notice that the subscripts in the functions indicate
that we adopt different functions, i.e., functions with dif-
ferent parameters, based on the node type and time stamps.
Then, we calculate the attention score between u and v using
a mapping function FR(·) on the query and key vector:

αu,v = FR
ϕe(u,v),∆t(q

t
u,k

t′

v ), (7)

where ∆t = t − t′, i.e., the relation mapping depends on
the difference in time stamps instead of the absolute values.
Inspired by HGT (Hu et al. 2020) and RGCN (Schlichtkrull



et al. 2018), we adopt a relation-aware projection to instan-
tiate FR(·), i.e.,

FR
ϕe(u,v),∆t(q,k) =

qWϕe(u,v),∆tk
⊤

√
d

, (8)

where Wϕe(u,v),∆t ∈ Rd×d denote the learnable parameters
for a specific edge type and time stamps and d is the dimen-
sionality. Finally, we normalize the attention scores using
the softmax function and aggregate all neighborhoods, i.e.,

ht
u ← Update(ht

u,
∑

v∈N (u)
α̂u,vv

t′

v )),

α̂u,v =
exp(αu,v)∑

v′∈N (u) exp(αu,v′)
.

(9)

Note that we can easily extend our method into multi-head
attention (Vaswani et al. 2017) to stabilize the training pro-
cess and improve the model’s expressiveness. We omit the
detailed formulations for brevity.

In summary, we can jointly aggregate information across
different types of neighborhoods in all time stamps using
one layer of DHGA. Compared to previous works which
aggregate spatial and temporal information separately, our
proposed method can capture more flexible heterogeneous
spatial-temporal graph structures.

Besides, we explicitly consider different types of rela-
tions, i.e., node types in the node mapping functions FN (·)
and edges types in the relation mapping functions FR(·),
and different time stamps by setting different parameters.
Thus, our proposed DHGA can learn to adaptively assign
different attention scores to handle different dynamic het-
erogeneous graph applications.

Though DHGA is flexible and expressive in modeling dy-
namic heterogeneous graphs, naively searching architectures
based on DHGA can incur high complexity when solving
the bi-level optimization in Eq. (3). In the following, we in-
troduce our tailored search space and search algorithm to
reduce the complexity while maintaining the expressiveness
of the model.

3.2 Attention Localization and Parameterization
Search Space

The full version of our proposed DHGA introduced in Sec-
tion 3.1 calculates attention across all types of neighbors and
all time stamps. While being the most expressive architec-
ture, the computation cost is also extensive. To sparsify the
attention and enable more lightweight and efficient architec-
tures, we propose the localization space and the parameteri-
zation space based on the full DHGA.

Localization Space: Locate where to apply attention.
First, we introduce the localization space which determines
what types of edges and time stamps should the attention
be calculated. In specific, we denote the localization space
as ALo = {0, 1}T×T×|Ce|. For ALo ∈ ALo, ALo

t,t′,r de-
notes whether calculating the representation of node u at
the time stamp t should attend to its neighbors N t′

r (u)
in the message-passing. Therefore, ALo completely deter-
mines where the attention functions are applied.

Notice that our proposed localization space is general and
flexible since it can cover many existing architectures as
special cases. For example, the full DHGA equivalents to
every value of ALo equals to one. It can also cover other
architectures including GAT (Veličković et al. 2018), Tem-
poral self-attention (Fan et al. 2022), Masked temporal self-
attention (Xue et al. 2020; Sankar et al. 2020), identity map-
ping to support skip connections, etc. (please refer to Ap-
pendix to the detailed correspondence).

Besides being general and flexible, we also greatly reduce
the complexity using the localization space. Specifically, it
is easy to see that the full DHGA has a time complexity

O(
∑T

t=1

∑T

t′=1

∑
r∈Ce

|Et′r |) = O(T 2|Ce| max
1≤t≤T,r∈Ce

|Etr|)
(10)

In comparison, the time complexity of using ALo is:

O(
∑T

t=1

∑T

t′=1

∑
r∈Ce

A
Lo
t,t′,r|E

t′
r |) = O(|ALo| max

1≤t≤T,r∈Ce
|Et

r|)

(11)

where |ALo| denotes the number of non-zero values in ALo.
By constraining the size of |ALo|, we can reduce DHGA
time complexity to be independent of the number of time
stamps T and the number of relation types |Ce|.

Parameterization Space: How to parameterize atten-
tion. To reduce the number of parameters, we propose
an parameterization space to search for how the atten-
tion functions should be calculated. Specifically, we de-
note the parameterization space as APa = AN × AR,
where AN = {1, ...,KN}T×|Cn| is the parameterization
matrix for the node mapping functions FN (·) and AR =
{1, ...,KR}2T×|Ce| is the parameterization matrix for the
relation mapping functions FR(·), and KN and KR are
two hyper-parameters. In a nutshell, we store KN mapping
functions for FN (·) and KR mapping functions for FR(·)
as prototypes, and each attention function can choose from
the corresponding prototypes. Concretely, let AN ∈ AN .
AN

t,c = k indicates that the node mapping function for node
u with ϕn(u) = c and time stamp t, i.e., FN

q,c,t(·), FN
k,c,t(·),

FN
v,c,t(·), should choose the kth function in all prototypes for
FN (·). Similarly, for AR ∈ AR, AR

∆t,c = k denotes that the
relation mapping function FR

c,∆t for relation ϕe(u, v) = c

should choose the kth prototype for FR(·).
Using the parameterization space, our proposed method

can flexibly determine which mapping functions, including
both node mapping functions and relation mapping func-
tions, should share parameters. Intuitively, some node types,
relation types, or time stamps share similar patterns and
therefore can enjoy parameter sharing without affecting the
performance. Since these patterns may depend on specific
dynamic heterogeneous graph datasets and tasks, we pro-
pose to search and learn these patterns adaptively instead of
manually setting the parameter sharing rules.

Similar to the localization space, the parameterization
space is general and covers diverse existing architectures.
For example, when KN = T×|Cn| and KR = 2T×|Ce|, we
can search for a unique prototype vector for each function
and recover the full DHGA. When KN = 1 and KR = 1, we
recover the existing homogeneous attention-based GNNs.



Using the parameterization space, we can reduce the
number of learnable parameters. It is easy to see that the
number of learnable parameters for the full DHGA is of
O(T (|Cn|+|Ce|)). Using the parameterization space, we can
reduce it to O(KN +KR). When constraining KN and KR

as constants, the number of learnable parameters is also a
constant, i.e., unrelated to the number of edges |E|, the num-
ber of time stamps T , or the number of node and edge types
|Cn| and |Ce|.

In short, the localization space and parameterization space
balance the model complexity and model expressiveness by
determining the edge types and time stamps in calculating
the attentions and the parameterization of attentions.

3.3 Multi-Stage Differentiable Search
With our proposed localization space and parameterization
space, we introduce our proposed search strategy. Denote
the whole search space as A = ALo × APa. It is easy to
see that the space can contain up to 2T

2|Ce|K
T |Cn|
N K

2T |Ce|
R

possible choices, which is considerably large and it is infea-
sible to enumerate all possible choices in practice. To reduce
the complexity of searching, we first propose heuristic con-
straints on the search space to remove invalid or ineffective
architectures, and then adopt the one-shot neural architec-
ture search algorithm to speed up the search process.

Space Constraint. Inspired by Masked temporal self-
attention (Xue et al. 2020; Sankar et al. 2020), we con-
strain the searched localization to respect the chronological
order of graph slices, i.e., the representation of node u at
time stamp t can only receive messages from neighborhood
N t′

r (u) with t′ ≤ t. This constraint has clear explanations,
since in practice it is infeasible to predict the current situa-
tion using future information. Besides, we add another con-
straint as |ALo

t | ≤ KLo, 1 ≤ t ≤ T , where KLo is a hyper-
parameter. In this way, we constrain the sparsity of the atten-
tion connections in each time slice and reduce the complex-
ity, as shown in paragraph 3.2. Assuming the continuity of
mapping functions in the temporal domain, we further break
time slices into consecutive patches, where functions within
one patch share the same parameters. Lastly, we constrain
the last layer of the architecture to only contain connections
to the last time slice T so that we can utilize these represen-
tations for downstream tasks.

Supernet Construction. Following the recent advance-
ments of NAS (Liu, Simonyan, and Yang 2019; Xie et al.
2018; Guo et al. 2020), we transform the bi-level optimiza-
tion in Eq. (3) into an one-shot NAS problem using a super-
net: Since every possible architecture a ∈ A is contained in
the supernet, its performance can be quickly evaluated us-
ing the corresponding weights in the supernet. Specifically,
in the supernet, the categorical choice of a particular opera-
tion is relaxed into a softmax overall all possible operations:
F̄(x) =

∑|A|
i=1

exp(βi)∑|A|
j=1 exp(βj)

Fi(x), where x is the input,

F̄(x) is the output, |A| denotes the number of possible op-
erations, and βi denotes the mixing weights for the ith pos-
sible function Fi(·). For the localization space, operations
indicate whether the attention function is applied. For the pa-

rameterization space, operations represent different node/re-
lation prototype mapping functions. Using the supernet, we
can jointly optimize the mixing weights β and all parameters
in the mapping functions in a differentiable manner:

w← w − ηw
∂Ltrain

∂w
, β ← β − ηβ

∂Lval

∂β
, (12)

where ηβ and ηw are the learning rate for model weights and
architecture weights, respectively.

Multi-stage Supernet Training. To stabilize the train-
ing of the supernet, we divide the training process into
three stages: node parameterization, relation parameteriza-
tion, and localization. In the node parameterization stage,
we force the attention location as fully-connected, and force
the relation mapping functions to share the same parameter-
ization and focus on searching for the node mapping func-
tions. In the relation parameterization stage, we select and
fix the choice in the node parameterization space and focus
on searching for the relation mapping functions. Similarly,
in the localization stage, we focus on searching in the lo-
calization space while fixing the choices in the other two
spaces. When the training is finished, we obtain an optimal
architecture by discretizing the operation choices.

4 Experiments
In this section, we evaluate the proposed method through
tasks including link prediction, node classification, and
node regression. We compare static homogeneous GNNs
GCN (Kipf and Welling 2017),GAT (Veličković et al.
2018) ; static heterogenous GNNs RGCN (Schlichtkrull
et al. 2018),HGT (Hu et al. 2020); dynamic heteroge-
neous GNNs DyHATR(Xue et al. 2020),HGT+ (Hu et al.
2020),HTGNN (Fan et al. 2022) as hand-designed base-
lines. We also compare to a state-of-the-art static homoge-
neous graph NAS method GraphNAS (Gao et al. 2020) and
a heterogeneous graph NAS method DiffMG (Ding et al.
2021). More details about the experimental setup can be
found in Appendix, including datasets, baselines, training
protocol, hyperparameters, task setup, loss functions, etc.

4.1 Main results
Link Prediction. First, we conduct experiments for the link
prediction task on two datasets: an academic citation dataset
Aminer (Ji et al. 2021) and a recommendation dataset
Ecomm (Xue et al. 2020). The results are shown in Table 1.
We have the following findings. (1) DHGAS achieves the
best result on both datasets with a large margin, i.e., im-
proving the AUC by approximately 2.5% and 4% over the
most competent baseline, respectively. The results demon-
strate that DHGAS can effectively handle the link predic-
tion task on dynamic heterogeneous graph datasets by tailor-
ing the most suitable architecture. (2) DiffMG reports rea-
sonably good results and outperforms most manually de-
signed heterogeneous methods, demonstrating the impor-
tance and potentials of automatically designing neural ar-
chitectures. However, there still exists a large performance
gap between DiffMG and our proposed DHGAS, especially
in the Ecomm dataset. We attribute this difference to that our



Table 1: The overall results for different methods for tasks including link prediction, node clas-
sification, and node regression. The evaluation metrics are in parentheses, and ↑ (↓) means that
higher (lower) value indicate better results. The best results are in bold and the second-best re-
sults are underlined.“-” indicates the method is not applicable.

Task Link Prediction Node Classification Node Regression
Metric (AUC%) ↑ (F1%) ↑ (MAE) ↓
Dataset Aminer Ecomm Yelp Drugs COVID-19

GCN 73.84 ± 0.06 77.94 ± 0.22 37.02 ± 0.00 56.43 ± 0.21 846 ± 101
GAT 80.84 ± 0.96 78.49 ± 0.31 35.54 ± 0.00 57.06 ± 0.00 821 ± 91

RGCN 82.75 ± 0.12 82.27 ± 0.51 37.75 ± 0.00 57.97 ± 0.14 833 ± 95
HGT 78.43 ± 1.81 81.09 ± 0.52 34.62 ± 0.00 57.65 ± 0.01 805 ± 88

DyHATR 74.24 ± 2.09 71.69 ± 0.90 34.49 ± 0.16 55.51 ± 0.09 643 ± 36
HGT+ 85.60 ± 0.12 76.68 ± 0.85 38.33 ± 0.00 59.09 ± 0.00 -

HTGNN 78.08 ± 0.80 76.78 ± 6.37 36.33 ± 0.07 56.24 ± 0.34 555 ± 34
GraphNAS 81.61 ± 0.98 79.37 ± 0.21 37.73 ± 0.00 57.13 ± 0.52 820 ± 43

DiffMG 85.04 ± 0.30 81.69 ± 0.06 38.65 ± 0.00 58.45 ± 0.15 629 ± 63
DHGAS 88.13 ± 0.18 86.56 ± 0.58 41.99 ± 0.18 62.35 ± 0.03 536 ± 43
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Figure 2: Visualization of
the searched architecture on
Aminer with KLo = 8.

proposed method can effectively jointly capture the tempo-
ral and heterogeneous information, as opposed to DiffMG
which only models the heterogeneous information. (3) In
general, modeling heterogeneous and temporal information
are both critical to boosting the performance of manually
designed baselines. For example, HGT+, which adopts the
relative time encoding technique, reports the second-best re-
sult on Aminer. However, HGT+ fails to handle Ecomm and
even performs worse than HGT. The results re-validate that
different datasets may require different GNN architectures
and manually designed methods may fail to adaptively han-
dle such diverse application scenarios.

Node Classification. Next, we compare different methods
for the node classification task adopting two datasets: a busi-
ness review dataset Yelp (Ji et al. 2021) and an e-commerce
risk management dataset Drugs3. From the results also
shown in Table 1, we have the following observations: (1)
Our proposed method DHGAS again reports the best results
on both datasets by improving the Macro-F1 score by more
than 3%. The results demonstrate that we can effectively
handle the node classification task for dynamic heteroge-
neous graphs by automatically designing architectures using
DHGAS. (2) The automated baseline DiffMG and manually
designed dynamic heterogeneous method HGT+ reports the
second-best result on Yelp and Drugs, showing the effective-
ness of NAS and importance of capturing dynamic heteroge-
neous information. Nevertheless, failing to merging the best
of two worlds, their performance gap compared to DHGAS
is still considerable.

Node Regression. For the node regression task, we adopt
an epidemic disease dataset COVID-19 (Fan et al. 2022).
We report the results in Table 1 and observe the follow-
ing findings: (1) Similar to the other two tasks, DHGAS
again achieves the best performance. The results demon-
strate that DHGAS can adaptively handle diverse applica-
tions of heterogeneous dynamic graphs. (2) For this task,
manually designed dynamic baselines (i.e., DyHATR and
HTGNN) greatly outperforms static methods, showing that

3Collected from Alibaba.com

modeling temporal information is critical to predicting the
COVID-19 cases, which is consistent with the literature.
(3) Though not considering dynamic information, DiffMG
again shows competitive performance, illustrating the great
potential of NAS methods. DHGAS can fully utilize such
potentials by our tailored search space and search algorithm
for dynamic heterogeneous graphs.

4.2 Ablation Studies
Search Space. To test the effectiveness of our proposed lo-
calization space and parameterization space, we compare the
full version with two ablated versions: ”DHGAS w/o tem-
poral” and ”DHGAS w/o temporal & heterogeneous”. The
former removes any attention localization in with different
time slices and the latter further forces the method to use the
same parameterization for all types of nodes and edges. For
simplicity, we only report the results on Aminer when the
space constraint hyper-parameters KLo are set as 20 and 40,
while other datasets and settings show similar patterns.

Figure 3 shows that removing temporal connections in lo-
calization space and heterogeneous parameterization will re-
duce the performance of the searched model. The results ver-
ify the effectiveness of DHGAS in exploiting temporal and
heterogeneous information in our tailored search space.

Search algorithm. We verify the design of our proposed
multi-stage supernet training. We compare DHGAS with
random search and DARTS (Liu, Simonyan, and Yang 2019)
based on our proposed search space. We report the results on
the Aminer dataset when the localization constraint hyper-
parameters KLo is chosen from {4, 8, 10, 20, 40} while
other results indicate similar conclusions.

As shown in Table 4, our proposed search algorithm out-
performs DARTS and random search for all localization
constraints. In particular, as KLo grows larger, the per-
formance of all methods increases, showing a clear trade-
off between efficiency and effectiveness. When KLo is
small, i.e., tight localization constraints, DHGAS can au-
tomatically search important attention locations and main-
tain impressive performance. In contrast, random search and
DARTS fail in these cases.
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Figure 3: The results of abla-
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Figure 5: Comparison of searched architectures un-
der different computational budgets KLo in terms
of inference time and performance on Aminer.
DHGAS(k) means DHGAS with budget KLo = k.

4.3 Additional Analyses
The efficiency of the searched architectures. Figure 5
shows that as we gradually increase the computational bud-
get KLo, DHGAS can obtain architectures with better per-
formance. The results show that DHGAS can search archi-
tectures tailored to the datasets as well as balance the com-
putational budgets and model performance.

Visualization of the searched architecture. Figure 2 vi-
sualizes the search architecture on Aminer with KLo = 8,
where the letter and number denote the node type and time,
respectively, and the colors denote the choices of node and
relation mapping functions. It verfies that DHGAS can flex-
ibly tailor localizations and mapping functions, demonstrat-
ing that our method can automate DHGNN designs and save
human endeavors tackling graph heterogenity and dynamics.

More results and visualizations are shown in Appendix.

5 Related Works
Dynamic Heterogeneous Graph Neural Networks.
Graph-structured data are ubiquitous in the real-world (Wu
et al. 2020; Zhou et al. 2020; Zhang, Cui, and Zhu 2020;
Li et al. 2022a,b,c,d, 2021a,b; Zhang et al. 2022c). To
generalize the success of GNNs in homogeneous graphs,
considerable research attention have been devoted to
heterogeneous GNNs (Yang et al. 2020; Wang et al. 2022;
Schlichtkrull et al. 2018; Zhang et al. 2019; Wang et al.
2019; Fu et al. 2020; Hu et al. 2020). Some works attempt
to consider dynamic information (Skarding, Gabrys, and
Musial 2021; Zhu et al. 2022; Yang et al. 2021; Zhang
et al. 2022b; Sankar et al. 2020; Wang et al. 2021; Xu et al.
2020; Rossi et al. 2020), and study dynamic heterogeneous
graphs (Kazemi et al. 2020; Xue et al. 2022, 2020; Barros
et al. 2021; Yuan et al. 2020; Hu et al. 2020; Fan et al. 2022).
Despite the success of these existing approaches, they are
all manually designed with a fixed architecture. Besides, the
spatial and temporal information are processed relatively
independently. In comparison, our proposed method can
jointly attend dynamic and heterogeneous neighborhoods
and automatically adapt to diverse dynamic heterogeneous
graph tasks and datasets.

Graph Neural Architecture Search. To automate the de-
sign of GNNs, graph NAS has drawn increasing popular-
ity in the last two years (Zhang, Wang, and Zhu 2021), in-
cluding reinforcement learning based methods (Gao et al.
2020; Zhou et al. 2019; Qin et al. 2021a, 2022b; Zhou et al.

2022; Guan et al. 2021), evolutionary learning based meth-
ods (Nunes and Pappa 2020; Li and King 2020; Shi et al.
2022; Guan, Wang, and Zhu 2021; Guan et al. 2022; Zhang
et al. 2022a), bayesian optimization based methods (Hou
et al. 2021) and differentiable methods (Zhao et al. 2020;
Huan, Quanming, and Weiwei 2021; Li et al. 2021c; Cai
et al. 2021; Qin et al. 2021b, 2022a) have also been studied.
However, all aforementioned works focus on static homo-
geneous graphs. More relevant to our work, DiffMG (Ding
et al. 2021) and HGNAS (Gao et al. 2021) propose to search
heterogeneous GNN architectures using meta-paths (Sun
et al. 2011) to differentiate node and edge types. How-
ever, they cannot capture the temporal information in dy-
namic graphs. Additionally, AutoSTG (Pan et al. 2021) pro-
poses to search GNN architectures for homogeneous spatial-
temporal graphs, neglecting the heterogeneous interactions.

In summary, the existing graph NAS methods cannot fully
capture the complex spatial-temporal information in real dy-
namic heterogeneous graphs. Our proposed DHGAS is the
first tailored dynamic heterogeneous graph neural architec-
ture search method, to the best of our knowledge.

6 Conclusion
In this paper, we propose a novel Dynamic Heterogeneous
Graph Attention Search (DHGAS) method to automate the
design of DHGNN. We propose a unified dynamic hetero-
geneous graph attention framework to jointly consider het-
erogeneous and dynamic neighbors of nodes. Based on the
framework, we design a localization space to determine
where the attention should be applied and a parameteriza-
tion space to determine how the attention should be pa-
rameterized. We further design a multi-stage differentiable
search algorithm to efficiently explore the search space. Ex-
tensive experiments on real-world dynamic heterogeneous
graph datasets demonstrate the superiority of our method.
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