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Abstract—Graph neural networks (GNNs) are emerging machine learning models on graphs. Permutation-equivariance and

proximity-awareness are two important properties highly desirable for GNNs. Both properties are needed to tackle some challenging

graph problems, such as finding communities and leaders. In this paper, we first analytically show that the existing GNNs,mostly based on

themessage-passingmechanism, cannot simultaneously preserve the two properties. Then, we proposeStochasticMessage Passing

(SMP)model, a general and simpleGNN tomaintain both proximity-awareness and permutation-equivariance. In order to preserve node

proximities, we augment the existingGNNswith stochastic node representations.We theoretically prove that themechanism can enable

GNNs to preserve node proximities, and at the same time, maintain permutation-equivariancewith certain parametrization.We report

extensive experimental results on ten datasets and demonstrate the effectiveness and efficiency of SMP for various typical graphmining

tasks, including graph reconstruction, node classification, and link prediction.

Index Terms—Graph neural network, message passing, node proximity, permutation equivariance
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1 INTRODUCTION

GRAPH neural networks (GNNs), as generalizations of
neural networks for learning on graph data, have

enjoyed successes in many applications, such as social rec-
ommendation [1], physical simulation [2], and protein inter-
action prediction [3]. The existing GNNs are mostly based
on the message-passing mechanism [4].

A fundamental property well preserved by the message-
passing GNNs is permutation-equivariance, i.e., if we ran-
domly permutate the IDs of nodes while maintaining the
graph structure unchanged, the representations of nodes in
those GNNs are permutated accordingly. Mathematically,
permutation-equivariance reflects one basic symmetric group
of graph structures. Permutation-equivariance is highly use-
ful for many graph mining tasks, such as node or graph

classification [5], [6]. As another important property, pairwise
proximities between nodes are crucial for some other graph
mining tasks, such as link prediction and community detec-
tion [7], [8]. Some GNNs, such as Position-aware GNN (P-
GNN) [8], have specifically designed mechanisms to ensure
proximity-awareness.

Inmany applications of GNNs, both proximity-awareness
and permutation-equivariance are indispensable. Consider
mining communities and leaders in graphs. Fig. 1 shows a
toy example for illustration. Fig. 1a shows the communities
and Fig. 1b shows the nodes categorized by the k-core num-
ber centrality. To discover the communities, proximity-
awareness is essential since the nodes in the same commu-
nity are tightly connected and have large proximities. Per-
mutation-equivariance helps to measure the centrality
because most centrality measurements are permutation-
equivariant by definition [9].

Do the existing GNNs, which are built on message-pass-
ing, honor both proximity-awareness and permutation-
equivariance? Surprisingly and unfortunately, the answer is
no. We show that proximity-awareness and permutation-
equivariance are incompatible in the exiting GNNs (see
Theorem 1). This deficiency in the existing GNNs is par-
ticularly irritating since, for the same task, different data-
sets may rely on the two properties to different extents.
Taking link prediction as an example, we observe that
permutation-equivariant GNNs such as GCN [10] or
GAT [11] show better performance than P-GNN in coau-
thor graphs, but perform worse in biological graphs (see
Section 5.3 for details). A work in drug repurposing for
Covid-19 [12] shows a similar dilemma: proximity-aware
methods and permutation-equivariant GNNs discover
completely different drug candidates.
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Can we develop a general GNN that is proximity-aware
and also maintains permutation-equivariance? In this paper,
we propose Stochastic Message Passing (SMP)1, a general
and simple GNN to preserve both proximity-awareness and
permutation-equivariance properties. In order to preserve
node proximities, we augment the existing GNNs with sto-
chastic node representations. We theoretically prove that the
mechanism can enable GNNs to preserve node proximities
(see Theorems 2 and 3). At the same time, SMP is equivalent
to a permutation-equivariant GNN with certain parametri-
zation and thus is at least as powerful as those GNNs in per-
mutation-equivariant tasks (see Remark 1). Therefore, SMP
is general and flexible in handling both proximity-aware and
permutation-equivariant tasks, which is also demonstrated
by our extensive experimental results. Besides, owing to the
simple structure, SMP is computationally efficient, with a
running time roughly the same as the simplest GNNs, such
as SGC [13], and is at least an order of magnitude faster than
P-GNN on large graphs. Our ablation studies further show
that a linear instantiation of SMP is expressive enough as
adding extra non-linearities does not lift the performance of
SMP on the majority of datasets. Our contributions are sum-
marized as follows.

� We propose Stochastic Message Passing (SMP), a
simple and general GNN to handle both proximity-
aware and permutation-equivariant graph tasks.

� We prove that SMP has theoretical guarantees in pre-
serving walk-based proximities and is as powerful as
the existing GNNs in permutation-equivariant tasks.

� Extensive experimental results demonstrate the
effectiveness and efficiency of SMP. We show that a
linear SMP instantiation is expressive enough on the
majority of datasets.

The rest of the paper is organized as follows. We review
related work in Section 2. In Section 3, we show the incom-
patibility between walk-based proximity and permutation-
equivariance in message-passing GNNS. We develop our
proposed Stochastic Message Passing in Section 4. We report
an extensive experimental study in Section 5, and conclude
the paper in Section 6. We provide additional experiments,
details for reproducibility, and proofs in the appendix.

2 RELATED WORK

We briefly review GNNs, the permutation-equivariance
property, and the proximity-awareness property. We refer
readers to [14] for a comprehensive survey.

The earliest GNNs adopt a recursive definition of node
states [15], [16] or a contextual realization [17]. GGS-

NNs [18] replace the recursive definition with recurrent
neural networks (RNNs). Spectral GCNs [19] define graph
convolutions using graph signal processing [20] with Cheb-
Net [21] and GCN [10] approximating the spectral filters
using a low-order Chebyshev polynomial and the first-
order polynomial, respectively. MPNNs [4], GraphSAGE [3],
and MoNet [22] are proposed as general frameworks by
characterizing GNNs with a message-passing function and
an updating function. More advanced variants such as
GAT [11], JK-Nets [23], GIN [24], and GraphNets [25] follow
these frameworks.

Li et al. [26], Xu et al. [24], Morris et al. [27], and Maron
et al. [28] show the connection between GNNs and the Weis-
feiler-Lehman algorithm [29] of graph isomorphism tests, in
which permutation-equivariance holds a key constraint.
Further, Maron et al. [6] and Keriven et al. [5] analyze the
permutation-equivariance property of GNNs theoretically.
To date, most of the existing GNNs are permutation-equiv-
ariant and are not proximity-aware. One exception is P-
GNN [8], which proposes to capture the positions of nodes
using the relative distance between the target node and
some randomly chosen anchor nodes. However, P-GNN
cannot satisfy permutation-equivariance and is computa-
tionally expensive. Concurrent to our work, some studies
propose to use position encodings to enhance GNNs in pre-
serving graph structures [30], [31], [32], [33]. Most of these
methods rely on eigenvectors of a graph matrix, which are
computationally expensive. Our proposed stochastic node
representations can also be regarded as a type of position
encoding while being extremely simple yet efficient.

In order to enhance the expressive power of GNNs in
graph isomorphism tests and alsomotivated by the literature
on distributed computing [34], some studies suggest assign-
ing unique node identifiers for GNNs [35], such as one-hot
IDs [36] or random numbers [37], [38], [39]. For example,
Sato et al. [38] show that random numbers can enhance
GNNs in tackling two graph-basedNPproblemswith a theo-
retical guarantee, namely the minimum dominating set and
the maximum matching problem. Fey et al. [40] empirically
show the effectiveness of random features in the graph
matching problem. Concurrent to our work, RNI [41] shows
that GNNs with random node features are universal in the-
ory. Our work here, which also adopts stochastic node repre-
sentations, differs in that we systematically study how to
preserve permutation-equivariance and proximity-aware-
ness simultaneously in a simple yet effective framework, a
novel topic distinct from those existing studies. Besides, we
theoretically prove that our proposed method can preserve
walk-based proximities. We also demonstrate the effective-
ness of our method on large-scale benchmarks for both
node- and edge-level tasks, while no similar results are
reported in the literature.

Another line of research is tackling the over-smoothing
problem [26], [42] and developing deep GNNs [43]. Since
these studies are orthogonal to our paper, we expect these
strategies to also work for our proposed SMP.

The design of our method is also inspired by the litera-
ture on random projection for dimensionality reduction [44].
To the best of our knowledge, we are the first to study ran-
dom projection in the scope of GNNs. More remotely, our
definition of node proximities is inspired and inherited

Fig. 1. A toy example of illustrating finding communities and leaders.
Labels are shown in different colors. (a) The two communities discov-
ered by spectral clustering, in which proximity-awareness is essential.
(b) The node labels correspond to the k-core number, a type of node
centrality. Permutation-equivariance is important for the task.

1. Code is available at https://github.com/NiuChH/SMP

ZHANG ETAL.: PERMUTATION-EQUIVARIANTAND PROXIMITY-AWARE GRAPH NEURAL NETWORKSWITH STOCHASTIC MESSAGE... 6183

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on April 08,2024 at 06:04:11 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/NiuChH/SMP


from graph kernels [45], [46], network embedding [47], [48],
and the general studies of graphs [49].

3 MESSAGE-PASSING GNNS AND ANALYSES

In this section, we first introduce preliminaries of message-
passing GNNs, walk-based proximities, and permutation-
equivariance. Then, we show the incompatibility between
proximity-awareness and permutation-equivariance in the
existing GNNs.

We consider a graph G ¼ V; E; Fð Þwhere V ¼ v1; . . .; vNf g
is a set ofN ¼ Vj j nodes, E � V � V is a set ofM ¼ Ej j edges,
and F 2 RN�d0 is a matrix of d0 node features. Denote by A
the adjacency matrix, and by Ai;:, A:;j, and Ai;j, respectively,
the ith row, the jth column and an element in the matrix.
In this paper, we assume unweighted and undirected
graphs. The neighborhood of node vi is denoted by N i. Let
~N i ¼ N i [ vif g.

The existing GNNs usually follow a message-passing
framework [4], where a neighborhood aggregation function
AGGð�Þ and an updating function UPDATEð�Þ are adopted
in the lth layer:

m
ðlÞ
i ¼ AGG h

ðlÞ
j ;h

ðlÞ
i ; ei;j; 8j 2 ~N i

n o
;

� �

h
ðlþ1Þ
i ¼ UPDATE h

ðlÞ
i ;m

ðlÞ
i

h i� �
; (1Þ

where h
ðlÞ
i 2 Rdl is the representation of node vi at the lth

layer, dl is the dimensionality, ei;j is the edge feature when
available, and m

ðlÞ
i are the messages. We also denote by

HðlÞ ¼ ½hðlÞ
1 ; . . .;h

ðlÞ
N � and �; �½ � the concatenation operation.

The node representations are initialized as node features,

i.e., Hð0Þ ¼ F. We represent a GNN following Eq. (1) with L

layers by a parameterized function as follows:2

HðLÞ ¼ FGNNðA; F;WÞ; (2)

where HðLÞ is node representation learned by the GNN and
W represents all the parameters.

A key property of GNNs is permutation-equivariance.

Definition 1 (Permutation-equivariance). Consider a graph
G ¼ V; E; Fð Þ and any permutation P : V ! V so that G0 ¼
V; E0; F0ð Þ has an adjacency matrix A0 ¼ PAPT and a feature
matrix F0 ¼ PF, where P 2 0; 1f gN�N is the permutation
matrix, i.e., Pi;j = 1 iff PðviÞ ¼ vj. A GNN satisfies permuta-
tion-equivariance if the node representations for G and G0 are
equivariant with respect to P, i.e.,

PFGNNðA; F;WÞ ¼ FGNNðPAPT ;PF;WÞ: (3)

It is well-known that GNNs following Eq. (1) satisfy per-
mutation-equivariance [6].

Definition 2 (Automorphism). A graph G is said to have
(non-trivial) automorphism if there exists a non-identity per-
mutation matrix P 6¼ IN so that A ¼ PAPT and F ¼ PF, i.e.,
the graph has a non-trivial isomorphism to itself. We denote by

CG ¼ S
P 6¼IN

ði; jÞjPi;j 6¼ 0; i 6¼ j
� �

the corresponding auto-
morphic node pairs.

Using Definition 1 and 2, we immediately have the fol-
lowing corollary.

Corollary 1. If a graph has a non-trivial automorphism, a per-
mutation-equivariant GNN produces identical node representa-
tions for automorphic node pairs

h
ðLÞ
i ¼ h

ðLÞ
j ; 8ði; jÞ 2 CG: (4)

Since node representations are used for downstream
tasks, Corollary 1 shows that permutation-equivariant
GNNs cannot differentiate automorphic node pairs. A
direct consequence is that permutation-equivariant GNNs
cannot preserve walk-based proximities between pairs of
nodes.

Definition 3 (Walk-based Proximities). For a given graph
G ¼ V; E; Fð Þ, denote by matrix S 2 RN�N the walk-based
proximities between pairs of nodes, defined by

Si;j ¼ S viˆ vj
� �� �

; (5)

where viˆ vj
� �

represents the set of walks from node vi to vj and
Sð�Þ is a real-valued function. The length of a walk-based proxim-
ity is the maximum length of all the walks of the proximity.

Typical examples of walk-based proximities include the
shortest distance [8], the high-order proximities (a sum of
walks weighted by their lengths) [50], and random walk
probabilities [51].

Definition 4. For a given walk-based proximity, a GNN is said
to preserve the proximity if there exists a decoder function
F deð�Þ such that for any graph G ¼ V; E; Fð Þ, there exist
parametersWG so that 8� > 0:

Si;j � F de H
ðLÞ
i;: ;H

ðLÞ
j;: ;Sð�Þ

� ���� ��� < �; (6)

where

HðLÞ ¼ FGNNðA; F;WGÞ: (7)

For notation convenience, we also write the decoder function as
F deðHðLÞ

i;: ;H
ðLÞ
j;: Þ when there is no ambiguity regarding Fð�Þ.

The definition applies to any GNN architecture as long as
it fits Eq. (1). Moreover, in the definition, we only constrain
the inputs of the decoder function to be node representa-
tions H and the proximity function Sð�Þ, but we do not con-
strain the form of the decoder function. In other words, the
decoder function can be arbitrarily sophisticated, e.g., deep
neural networks with a sufficient number of layers and hid-
den units. Now we are ready to present the incompatibility.

Theorem 1. For any walk-based proximity function Sð�Þ satisfy-
ing Definition 3, a permutation-equivariant GNN cannot pre-
serve Sð�Þ, except for the trivial situation where all node pairs
have the same proximity, i.e., 8i; j, Si;j ¼ c, and c is a constant.3

2. Since the final layer of GNNs is task-specific, e.g., a softmax layer
for node classification or a readout layer for graph classification, we
only consider the GNN architecture to its last hidden layer.

3. Proposition 1 in P-GNN [8] can be regarded as a special case of
Theorem 1 using the shortest distance proximity.
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Proof. We prove by contradiction. Assume there exists a
non-trivial Sð�Þ that can be preserved by a permutation-
equivariant GNN. Consider any graph G ¼ V; E; Fð Þ. We
will construct a graph G0 with automorphism from G so
that any GNN cannot preserve Sð�Þ on G0. Specifically, let
N ¼ Vj j. We create G0 ¼ V0; E0; F0ð Þ; V0j j ¼ 2 N , such that

E0
i;j ¼

Ei;j if i � N; j � N
Ei�N;j�N if i > N; j > N
0 else

8<
:
F0i;: ¼

Fi;: if i � N
Fi�N;: if i > N:

	

Basically, we generate two “copies” of the original
graph, one indexing from 1 to N , and the other one from
N þ 1 to 2 N . By assumption, there exists a permutation-
equivariant GNN that can preserve Sð�Þ in G0. Let the
node representations for such a GNN as H0ðLÞ ¼
FGNNðA0; F0;WG0 Þ. It is easy to see that node v0i and v0iþN

in G0 form an automorphic node pair. According to Cor-
ollary 1, their representations are identical, i.e.,

H
0ðLÞ
i;: ¼ H

0ðLÞ
iþN;:; 8i � N: (8)

Note that there exists no walk from the two copies, i.e.
fv0iˆ v0jg ¼ fv0jˆ v0ig ¼ ;; 8i � N; j > N . As a result, for
8i � N; j � N; 8� > 0, we have:

Si;j�Sð;Þ�� ��� Si;j�F de H
0ðLÞ
i;: ;H

0ðLÞ
j;:

� ���� ���þ Sð;Þ�F de H
0ðLÞ
i;: ;H

0ðLÞ
j;:

� ���� ���
¼ Si;j�F de H

0ðLÞ
i;: ;H

0ðLÞ
j;:

� ���� ���þ Si;jþN � F de H
0ðLÞ
i;: ;H

0ðLÞ
jþN;:

� ���� ��� < 2�:

We can prove the same for 8i > N; j > N . The equa-
tion naturally holds if i � N; j > N or i > N; j � N ,
since fv0iˆ v0jg ¼ ;. Combining the results, we have 8� >
0; 8i; j, Si;j � Sð;Þ�� �� < 2�. Since � can be arbitrarily small,
the equation shows that all node pairs have the same
proximity c ¼ Sð;Þ. In other words, Sð�Þ is a trivial situa-
tion. A contradiction. tu
An alternative proof by constructing connected graphs as

contradictions is provided in Appendix C.2.
Since walk-based proximities are rather general and

widely used in many graph mining tasks such as link pre-
diction, Theorem 1 shows that the existing permutation-
equivariant GNNs cannot handle these tasks well.

4 STOCHASTIC MESSAGE PASSING

In this section, we develop our stochastic message passing
model. We first describe our framework, and then explore a
linear implementation and non-linear extensions.

4.1 Stochastic Message Passing Framework

Theorem 1 indicates that a major shortcoming of permuta-
tion-equivariant GNNs is that they cannot differentiate
automorphic node pairs. To solve that problem, we need to
introduce some mechanism as “symmetry breaking,” i.e., to
enable GNNs to distinguish symmetric nodes. To achieve
this goal, we sample a stochastic matrix E 2 RN�d, where
each element follows an i.i.d. normal distribution Nð0; 1Þ.
We leave exploring other possible stochastic signals besides

Gaussian distributions as future works. The stochastic
matrix can provide signals to distinguish the nodes because
they are randomly sampled without being affected by the
graph automorphism. In fact, we can easily calculate that the
Euclidean distance between two stochastic signals divided
by a constant

ffiffiffi
2

p
follows a chi distribution xd, that is,

1ffiffiffi
2

p Ei;: � Ej;:

�� �� 	 xd; 8i; j: (9)

When d is reasonably large, e.g., d > 20, the probability
of two signals being close is very low. Then, inspired by the
message-passing framework, we apply a GNN on the sto-
chastic matrix so that the nodes can exchange information
of the stochastic signals,

~E ¼ FGNN A;E;Wð Þ: (10)

We call ~E the stochastic representation of nodes. By the
message-passing on the stochastic signals, ~E can be used to
preserve node proximities (will be shown in Theorem 2 and
Theorem 3 in a moment). To still allow our model to utilize
node features, we concatenate ~E with node representations
from another GNNwith node features as inputs. That is,

H ¼ F outputð½~E;HðLÞ�Þ
~E ¼ FGNN A;E;Wð Þ;HðLÞ ¼ FGNN0 ðA; F;W0Þ; (11Þ

where F outputð�Þ is an aggregation function, such as a linear
function or simply the identity mapping. In a nutshell, our
proposed method augments the existing GNNs with a sto-
chastic representation learned by message-passings to dif-
ferentiate different nodes and preserve node proximities.

There is also a delicate choice worthy mentioning, i.e.,
whether the stochastic matrix E is fixed or resampled in each
epoch. On the one hand, by fixing E, the model can learn to
memorize the stochastic representation and distinguish dif-
ferent nodes, but with the cost of being unable to handle
nodes not seen during training. On the other hand, by resam-
plingE in each epoch, themodel can have a better generaliza-
tion ability since the model cannot simply remember one
specific stochastic matrix. However, the node representa-
tions are not fixed (but pairwise proximities are preserved;
see Theorem 2). In these cases, ~E is more capable of handling
pairwise tasks such as link prediction or pairwise node
classification.

In this paper, we fix E for transductive datasets and
resample E for inductive datasets (see Section 5.1 for the
experimental settings and Section 5.7 for an ablation study
of this design).

Time Complexity From Eq.(11), the time complexity of
our frameworkmainly depends on the twoGNNs in learning
the stochastic and permutation-equivariant node representa-
tions. In this paper, we instantiate these two GNNs using
simple message-passing GNNs, such as GCN [10] and
SGC [13] (see Section 4.2 and Section 4.3). Thus, the time com-
plexity of our method is the same as those models employed,
which is OðMÞ, i.e., linear with respect to the number of
edges. We also empirically compare the running time of
different models in Section 5.8. Besides, GNN acceleration

ZHANG ETAL.: PERMUTATION-EQUIVARIANTAND PROXIMITY-AWARE GRAPH NEURAL NETWORKSWITH STOCHASTIC MESSAGE... 6185

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on April 08,2024 at 06:04:11 UTC from IEEE Xplore.  Restrictions apply. 



schemes such as sampling [52], [53], [54] or partitioning the
graph [55] can be directly applied to our framework.

4.2 A Linear Instantiation

Based on the general framework in Eq. (11), let us explore its
minimummodel instantiation, i.e., a linear model.

Specifically, inspired by Simplified Graph Convolution
(SGC) [13], we adopt a linear message-passing for both
GNNs, i.e.,

H ¼ F outputð½~E;HðLÞ�Þ ¼ F outputð½~AKE; ~AKF�Þ; (12)

where ~A ¼ ðDþ IÞ�1
2ðAþ IÞðDþ IÞ�1

2 is the normalized
graph adjacency matrix with self-loops proposed in GCN
[10], I is the identity matrix, andK is the number of propaga-
tion steps.We also setF outputð�Þ in Eq. (12) to a linearmapping
or identitymapping.

Elegantly, this simple SMP instantiation has a theoretical
guarantee on preserving walk-based proximities.

Theorem 2. An SMP in Eq. (12) can preserve the walk-based
proximity ~AKð~AKÞT with high probability if the dimensional-
ity of the stochastic matrix d is sufficiently large, i.e., 8� > 0
and d > 0, 9 d0 so that for any d > d0,

P Si;j �F de Hi;:;Hj;:

� ��� �� < �
� �

> 1� d; (13)

where H is the node representation obtained from SMP in
Eq. (12). The result holds for any stochastic matrix, no matter
whether E is fixed or resampled during each epoch.

Proof. Our proof is mostly based on the random projection
theory. First, since we show in Theorem 1 that the permu-
tation-equivariant representations cannot preserve any
walk-based proximity, here we develop our proof assum-
ing H ¼ ~E. This can be easily achieved in the model by
ignoring HðLÞ in F outputð½~E;HðLÞ�Þ. For example, if we set
F outputð�Þ as a linear function, themodel can learn to set the
corresponding weights for HðLÞ as all-zeros and weights
for ~E as an identity matrix.

We set the decoder function as a normalized inner
product

F de Hi;:;Hj;:

� � ¼ 1

d
Hi;:H

T
j;: ¼

1

d
~Ei;:

~ET
j;:: (14)

Let ai ¼ ~AK
i;:. Recall

~E ¼ ~AKE. Then, we have

Si;j �F de Hi;:;Hj;:

� ��� �� ¼ jaiaTj � 1

d
~Ei;:

~ET
j;:j ¼ jaiaTj � 1

d
aiEE

TaTj j:

Since E is a Gaussian random matrix, using the Johnson-
Lindenstrauss lemma [44] (in the inner product preserva-
tion form, e.g., see Corollary 2.1 and its proof in [56]),
80 < �0 < 1

2 , we have

P jaiaTj � 1

d
aiEE

TaTj j �
�0

2
ð aik k þ aj

�� ��Þ
� 

> 1� 4e�
ð�02��03Þd

4 :

By setting �0 ¼ �
maxi aik k , we have � > �0

2 ð aik k þ aj
�� ��Þ and

P Si;j � F de Hi;:;Hj;:

� ��� �� < �
� �

> 1� 4e�

�
�

maxi aik k
2� �

maxi aik k
3
�
d

4 ;

which leads to the theorem by solving and setting d0 as
follows.

4e�

�
�

maxi aik k
2� �

maxi aik k
3
�
d0

4 ¼ d ) d0 ¼
4log 4

d
maxi aik kð Þ3

�2maxi aik k � �3
:

tu
Next, we show that SMP is equivalent to a permutation-

equivariant GNNwith certain parametrization.

Remark 1. Suppose we adopt F outputð�Þ as a linear function
with the output dimensionality same as FGNN0 . Then,
Eq. (11) is equivalent to the permutation-equivariant
FGNN0 ðA; F;W0Þ if the parameters in F outputð�Þ are all-zeros
for ~E and an identity matrix forHðLÞ.

The result is straightforward from the definition.

Corollary 2. For any task, Eq. (11) with a linear F outputð�Þ in
Remark 1 is at least as powerful as the permutation-equiv-
ariant FGNN0 ðA; F;W0Þ, i.e., the minimum training loss of
using H in Eq. (11) is equal to or smaller than that using
HðLÞ ¼ FGNN0 ðA; F;W0Þ.
In other words, SMP will not hinder the performance4

even if the tasks are strictly permutation-equivariant, since
the stochastic representations are concatenated with the per-
mutation-equivariant GNNs followed by a linear mapping.
In these cases, the linear SMP is equivalent to SGC [13].

Combining Theorem 2 and Corollary 2, the linear SMP
instantiation in Eq. (12) is capable of handling both proxim-
ity-aware and permutation-equivariant tasks.

4.3 Non-Linear Extensions

One may be curious whether a more sophisticated variant of
Eq. (11) can further improve the expressiveness of SMP.
There are three adjustable components in Eq. (11): two
GNNs in propagating the stochastic matrix and node fea-
tures, respectively, and an output function. In theory, adopt-
ing non-linearmodels as either component is able to enhance
the expressiveness of SMP. Indeed, if we use a sufficiently
expressive GNN in learning ~E instead of linear propagations,
we can prove amore general version of Theorem 2.

Theorem 3. For any length-L walk-based proximity, i.e.,

Si;j ¼ S viˆ vj
� �� � ¼ S viˆ vjjlenðviˆ vjÞ � L

� �� �
;

where lenð�Þ is the length of a walk, there exists an SMP variant
in Eq. (11) with FGNN A;E;Wð Þ containing Lþ 1 layers
(including the input layer) to preserve that proximity if the fol-
lowing conditions hold: (1) The stochastic matrix E contains
identifiable unique signals for different nodes, i.e. Ei;: 6¼ Ej;:; 8i 6
¼ j. Here we assume that the Gaussian random vectors E are
rounded to machine precision so that E is drawn from a count-
able subspace of R. (2) The message-passing and updating
functions in learning ~E are bijective. (3) The decoder function
F deð�Þ also takes E as inputs and is universal approximation.

4. Similar to previous analyses such as [3], [24], we only consider the
minimum training loss because the optimization landscapes and gener-
alization gaps of deep neural networks are difficult to analyze analyti-
cally. We leave such explorations as future works.
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Proof. The proof of the theorem is given in Appendix C.1. tu
We can also adopt more advanced methods for F outputð�Þ,

such as attentions or even another GNN, so that the two
GNNs are more properly integrated.

Although non-linear extensions of SMP can, in theory,
increase the model expressiveness, they also take a higher
risk of over-fitting due to model complexity, not to mention
that the computational cost also increases. In practice, we
find from our ablation studies that the linear SMP instantia-
tion in Eq. (12) works reasonably well on most of the data-
sets (please refer to Section 5.7 for details).

5 EXPERIMENTS

In this section we report our extensive experimental studies.
We first describe the experiment settings, benchmarks and
baselines. Then, we use a synthetic dataset to demonstrate
the simultaneous needs of both permutation-equivariance
and proximity-awareness in applications, illustrating the
deficiencies of the existing GNNs in preserving the two
properties and the capability of our SMP method. We use a
series of benchmark tasks, including link prediction, node
classification, and pairwise node classification, to compre-
hensively examine the capability of our SMPmethod against
the strong baselines. Next, we conduct ablation studies of
SMP. Last, we evaluate the efficiency of ourmethod.

5.1 Experimental Setup

Except for the proof-of-concept experiment in Section 5.2,
we use the following setup.

5.1.1 Datasets

Weconduct experiments on the following tendatasets: two sim-
ulation datasets, Grid and Communities (Comm in abbrevia-
tion) [8], a communication dataset Email [8], two coauthor
networks, CS and Physics [57], two protein interaction net-
works, PPI [3] and PPA [7], and three benchmarks, Cora, Cite-
Seer, and PubMed [58].We summarize the statistics of datasets
in Table 1 andprovide datasets details inAppendix B.1.

These datasets cover a wide spectrum of application
domains, various sizes, and with or without node features.
Since Email and PPI contain more than one graph, we conduct
experiments in an inductive setting, i.e., the training, validation,
and testing set are split with respect to different graphs. We

repeat each experiment 5 times for all datasets except for PPA
(3 times for each experiment on PPA), and report the averaged
results and the standard deviations after the plus-minus signs.

5.1.2 Baselines

We adopt two sets of baselines. The first set is permutation-
equivariant GNNs including GCN [10], GAT [11], and
SGC [13]. They are widely adopted GNN architectures. The
second set contains P-GNN [8], a representative proximity-
aware GNN.

In comparing with the baselines, we mainly evaluate two
variants of SMP with different F outputð�Þ: SMP-Identity, i.e.,
F outputð�Þ as an identity mapping, and SMP-Linear, i.e.,
F outputð�Þ as a linear function. Note that both variants adopt
linear message-passing functions as SGC. We conduct abla-
tion studies with more SMP variants in Section 5.7.

For fair comparisons, we adopt the same architecture and
hyper-parameters for all themethods (please refer to Appen-
dix B.2 for details). For datasets without node features, we
adopt a constant vector as the node features.

5.2 A Proof-of-Concept Experiment

We first conduct a proof-of-concept experiment to demonstrate
the importance of preserving both permutation-equivariance
and proximity-awareness.We generate a synthetic dataset simi-
lar to the intuition behind the example in Fig. 1 as follows. First,
the nodes are randomly partitioned into a set of communities.
The nodes within the same community have a higher probabil-
ity of forming edges than the nodes in different communities,
i.e., the well-known stochastic block model [49]. Then, within
each community, we generate a social status for each nodewith
two possible choices. If a node is active, it has a high probability
of forming edgeswith other nodes in the same community.Oth-
erwise, the node has a low probability of forming edges with
others, i.e., inactive. From the above generating process, we can
see that proximity-awareness is essential to predict which com-
munity a node belongs to, since nodeswithin the same commu-
nity have large proximities. To predict whether a node is active
or inactive, permutation-equivariance is helpful, since the social
status serves as a type of centrality measurements. Please refer
toAppendix B.1 for further details of the synthetic dataset.

We conduct experiments on the synthetic dataset for the
node classification task, i.e., predicting the node labels.We con-
sider the following three cases. (1)Community: The node label
is the community that the node belongs to. (2) Social Status:
The node label is the social status of the node. (3) Both: The
node label is theCartesianproduct of (1) and (2), i.e., every com-
munity and social status pair is a distinct label. We use a soft-
max layer on the learned node representations as the classifier,
and use accuracy, i.e., the percentage of nodes correctly classi-
fied, as the evaluationmetric. We omit the results of SMP-Iden-
tity since the node representations in SMP-Identity have a fixed
dimensionality that does notmatch the number of classes.

Table 2 shows the results, which are consistent with our
analyses. The permutation-equivariant GNNs perform rea-
sonably well on predicting the social status labels but can-
not discover communities, since node proximities are not
preserved in those methods. P-GNN manages to handle
community labels well, but performs poorly for social status
labels. None of them can handle the most challenging

TABLE 1
The Statistics of the Datasets.

Dataset #Graphs #Nodes #Edges #Features #Classes

Grid 1 400 760 - -
Comm 1 400 3,800 - 20
Email 7 1,005 25,571 - 42
CS 1 18,333 81,894 6,805 15
Physics 1 34,493 247,962 8,415 5
PPI 24 56,944 818,716 50 -
PPA 1 576,289 30,326,273 58 -
Cora 1 2,708 5,429 1,433 7
CiteSeer 1 3,327 4,732 3,703 6
PubMed 1 19,717 44,338 500 3

For Email and PPI, #nodes and #edges are Summed Over All the Graphs and
the Experiments are Conducted in an Inductive Setting.
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setting where both properties are needed to predict the
node labels of community and status.

SMPperforms consistentlywell in all three cases. The results
clearly show that SMP can simultaneously preserve permuta-
tion-equivariance and proximity-awareness when needed and
retain highly competitive performance for each property. In
fact, for the community labels, SMP significantly outperforms
P-GNN, demonstrating that SMP can better preserve proxim-
ities between nodes.

Next, we report experimental results on benchmark
datasets.

5.3 Link Prediction

Link prediction predictsmissing links in a graph.We randomly
split the edges into three exclusive parts of relative sizes 80%,
10% and10%, anduse them for training, validation, and testing,
respectively. Besides these positive samples,we obtain negative
samples by randomly sampling an equal number of node pairs
that do not have edges for training/validation/testing. For all
themethods, we set a simple classifier: SigmoidðHT

i HjÞ, i.e., use
the inner product to predictwhether a node pair ðvi; vjÞ forms a
link, and use AUC (area under the ROC curve) as the evalua-
tion metric. One exception to this setting is that on the PPA
dataset, we follow the splits and evaluation metric (i.e.,
Hits@100) provided by the dataset [7]. Limited by space, the
results for three benchmarks (Cora, CiteSeer, and PubMed) are
shown inAppendixA.2.

The results except PPA are shown in Table 3. SMP
achieves the best results on five out of the six datasets and is
highly competitive (the second-best result) on the other
(Physics). The results demonstrate the effectiveness of SMP
in link prediction tasks. We attribute the strong

performance of SMP to its capability of maintaining both
proximity-awareness and permutation-equivariance
properties.

On Grid, Communities, Email, and PPI, both SMP and P-
GNN outperform the permutation-equivariant GNNs, con-
firming the importance of preserving node proximities.
Although SMP is simpler and more efficient than P-GNN,
SMP reports even better results.

When node features are available (CS, Physics, and PPI),
SGC outperforms GCN and GAT. The results re-validate the
findings in SGC [13] and LightGCN [59] that the non-linearity
in GNNs is not necessarily indispensable. Some plausible rea-
sons include that the additional model complexity brought by
non-linear operators makes the models tend to overfit or diffi-
cult to be trained. On those datasets, SMP retains comparable
performance on two coauthor graphs and shows better perfor-
mance on PPI, possibly because the node features on the pro-
tein graphs are less informative than the node features on
coauthor graphs for predicting links. Thus, preserving graph
structure is more beneficial on PPI. Aswe experiment on Email
and PPI in the inductive setting, the results show that SMP also
can handle inductive taskswell.

The results on PPA are shown in Table 4. SMP outper-
forms all the baselines, showing that it can handle large-
scale graphs with millions of nodes and edges. PPA is part
of a recently released Open Graph Benchmark (OGB) [7].
The superior performance on PPA further demonstrates the
effectiveness of SMP in link prediction.

5.4 Node Classification

In the task of node classification, we need ground-truths in the
evaluation. Thus, we only adopt datasets with node labels. Spe-
cifically, for CS and Physics, we adopt 20/30 labeled nodes per
class for training/validation and the rest for testing [57]. For
Comm,we adjust the number as 5/5/10 labeled nodes per class
for training/validation/testing. For Cora, CiteSeer, and
PubMed, we use the default splits that come with the datasets.
We do not adopt Email because some graphs in the dataset are
too small to show stable results.We also exclude PPI since it is a
multi-label dataset. Other settings are the same as Section 5.2.

The results are shown in Table 5. SMP reports nearly per-
fect results on Comm. Since the node labels are generated by
graph structures on Comm and there are no node features, a
model has to be proximity-aware to handle Comm well. P-
GNN, which shows promising results in the link prediction
task, fails miserably here.

On the other five graphs, SMP reports highly competitive
performance. These graphs are commonly-used benchmarks

TABLE 2
The Results of Node Classification Measured in Accuracy (%)

on the Proof-of-Concept Synthetic Dataset.

The Best Result and the Second-Best Result for Each Task, Respectively,
are in Bold and Underlined.

TABLE 3
The Results of Link Prediction Tasks Measured in AUC (%).

The Best Result and the Second-Best Result for Each Dataset, Respectively, are in Bold and Underlined.
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for GNNs. P-GNN, which completely ignores permutation-
equivariance, performs poorly as expected. In contrast, SMP
manages to be competitivewith the permutation-equivariant
GNNs, as endorsed by Remark 1. In fact, SMP even shows
better results than its counterpart, SGC, indicating that pre-
serving proximities is also helpful.

5.5 Pairwise Node Classification

We followP-GNN [8] and experiment on pairwise node classifi-
cation, i.e., predicting whether two nodes have the same label.
Comparedwith node classification in Section 5.4, pairwise node
classification focuses more on the relation between nodes and
thusmore likely to require amodel to be proximity-aware.

Similar to link prediction, we split the positive sam-
ples (i.e., node pairs with the same label) into an 80%-
10%-10% training-validation-testing set with an equal
number of randomly sampled negative pairs. For large
graphs, since the possible positive samples are intracta-
ble (i.e. OðN2Þ), we use a random subset. As we also
need node labels as the ground-truth, we only conduct
pairwise node classification on the datasets when node
labels are available. We also exclude the results on PPI
since the dataset is multi-labeled and cannot be used in
a pairwise setting [8]. Similar to the link prediction task
in Section 5.3, we adopt a simple inner product classifier
and use AUC as the evaluation metric.

The results are shown in Table 6. We observe consistent
results as the link prediction task, i.e., SMP reports the best
results on four datasets and the second-best results on the other
three datasets. These results again verify that SMP can effec-
tively preserve and utilize node proximities while retaining
comparable performancewhen the tasks aremore permutation-
equivariant like, e.g., on CS, Physics, and the three benchmarks
(Cora, CiteSeer, andPubMed).

5.6 Graph Reconstruction

To examine whether SMP can indeed preserve node proxim-
ities, we conduct experiments on graph reconstruction [60],
i.e., using the node representations learned by GNNs to recon-
struct the edges of the graph. Graph reconstruction corre-
sponds to the first-order proximity between nodes, i.e.,
whether two nodes directly have a connection, which is the
most straightforward node proximity [61]. Specifically, follow-
ing link prediction and pairwise node classification, we adopt
the inner product classifier SigmoidðHT

i HjÞ and use AUC as
the evaluation metric. To control the impact of node features
(i.e., many graphs exhibit assortative mixing [49], thus even

models only using node features can reconstruct the edges to a
certain extent), we do not use node features for all themodels.

The results are reported in Table 7. The results show that
SMP greatly outperforms permutation-equivariant GNNs
such as GCN and GAT for the graph reconstruction task,
clearly demonstrating that SMP can better preserve node
proximities. P-GNN shows highly competitive results as
SMP. However, similar to the other tasks, the intensive
memory usage makes P-GNN unable to handle medium-
scale graphs such as Physics and PubMed.

5.7 Ablation Studies

We conduct ablation studies by comparing different SMP
variants, including SMP-Identity, SMP-Linear, and addi-
tional three variants.

� In SMP-MLP, we set F outputð�Þ to a fully-connected
network with one hidden layer.

� In SMP-Linear-GCNfeat, we set FGNN0 ðA; F;W0Þ in
Eq. (11) to a GCN [10], i.e., induce non-linearity in
the message-passing for features. FGNN A;E;Wð Þ and
F outputð�Þ are still linear.

� In SMP-Linear-GCNboth, we set both GNNs in
Eq. (11), i.e., FGNN A;E;Wð Þ and FGNN0 ðA; F;W0Þ, to a
GCN [10], i.e., induce non-linearity in message-pass-
ing for both features and stochastic representations.
F outputð�Þ is linear.

We show the results of link prediction in Table 8. The results
for node classification and pairwise node classification, which
show similar conclusions, are provided inAppendixA.3.

In general, SMP-Linear shows impressive performance,
achieving the best or second-best results on six datasets and
highly competitive on the other (Comm). SMP-Identity, which
does not have learnable parameters in the output function, per-
forms slightlyworse. The results demonstrate the importance of
adopting a learnable linear layer in the output function, which
is consistent with Remark 1. SMP-MLP does not lift the perfor-
mance in general, showing that adding extra complexities in
F outputð�Þ brings no gain in those datasets. SMP-Linear-GCNfeat

reports the best results on Communities, PPI, and PPA, indicat-
ing that adding extra non-linearities in propagating node fea-
tures is helpful for some graphs. SMP-Linear-GCNboth reports
the best results on Gird with a considerable margin. Recall that
Grid has no node features. The results indicate that inducing
non-linearities can help the stochastic representations to better
capture proximities for some graphs.

We also assess the effects ofwhether the stochastic signals E
are fixed or not during different training epochs for our pro-
posed SMP. For brevity, we only report the results of link

TABLE 4
The Results of Link Prediction on the PPA Dataset

TABLE 5
The Results of Node Classification Tasks Measured by

Accuracy (%).

The Best Results and the Second-Best Results for Each Dataset, Respectively,
are in Bold and Underlined. OOM Represents Out of Memory.
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prediction in Table 9. The results show that fixing E usually
leads to better results on transductive datasets (recall that data-
sets except Email and PPI are transductive) and resampling E
leads to better results on inductive datasets. The results
are consistent with our analysis in Section 4.1.

5.8 Efficiency

To compare the efficiency of different methods quantitatively,
we report the running time of different meth-ods in Table 10.

The results are averaged over 3,000 epochs on an NVIDIA
TESLAM40GPUwith 12GBofmemory.

The results show that SMP is computationally efficient,
i.e., only marginally slower than SGC and comparable to
GCN. P-GNN is at least an order of magnitude slower
except for the extremely small graphs such as Grid, Com-
munities, or Email, which have no more than a thousand
nodes. In addition, the expensive memory cost makes P-
GNN unable to work on large-scale graphs.

TABLE 6
The Results of Pairwise Node Classification Tasks Measured in AUC (%).

The Best Result and the Second-Best Result for Each Dataset, Respectively, are in Bold and Underlined.

TABLE 7
The Results of Graph Reconstruction Measured in AUC (%).

The Best Result and the Second-Best Result for Each Dataset, Respectively, are in Bold and Underlined.

TABLE 8
The Ablation Study of SMP Variants for the Link Prediction Task.

Datasets Except PPA are Measured by AUC (%) and PPA is Measured by Hits@100. The Best Result and the Second-Best Result for Each Dataset are in Bold
and Underlined, Respectively.

TABLE 9
The Results of Comparing Whether the Stochastic Signals E are Fixed or Not During Different Training Epochs

for the Link Prediction Task.

Model E Grid Comm CS Physics Email PPI

SMP-Identity Fixed 55.1
4.8 98.0
0.7 96.5
0.1 96.5
0.1 75.9
3.9 80.4
0.4
Not Fixed 55.2
4.1 97.6
0.7 96.4
0.1 96.5
0.1 72.9
5.1 81.0
0.2

SMP-Linear Fixed 73.6
6.2 97.7
0.5 96.7
0.1 96.1
0.1 71.3
3.9 71.5
0.7
Not Fixed 64.4
2.9 97.4
0.1 96.2
0.1 96.1
0.1 75.7
5.0 81.9
0.3

The Better of the Two Results are in Bold.
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6 CONCLUSION

In this paper, we propose SMP, a general and simple GNN
to preserve both proximity-awareness and permutation-
equivariance. We augment the existing GNNs with stochas-
tic node representations. We prove that SMP can enable
GNNs to preserve node proximities and is equivariant to a
permutation-equivariant GNN with certain parametriza-
tion. Our experimental results demonstrate the effectiveness
and efficiency of SMP.
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