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Abstract—Self-supervised learning for graph neural networks has attracted considerable attention and shows notable successes

in graph representation learning. However, the formation of a real-world graph typically arises from highly complex interactions of many

latent factors. The existing self-supervised learning methods for GNNs are inherently holistic and neglect the entanglement of the latent

factors, resulting in suboptimal learned representations for downstream tasks and difficult to be interpreted. Learning disentangled

graph representations with self-supervised learning poses great challenges and remains largely ignored by the existing literature.

In this paper, we introduce Independence Promoted Disentangled Graph Contrastive Learning (IDGCL) method, which can learn

disentangled graph-level representations with self-supervision. In particular, we first identify the latent factors of the input graph and

derive its factorized representations. Then we propose a factor-wise discrimination objective in a contrastive learning manner, which

can force the factorized representations to independently reflect the expressive information from different latent factors. To further

promote the independence between the representations, we employ the Hilbert-Schmidt Independence Criterion to eliminate the

dependence among different representations, which is effectively integrated into the self-supervised framework as a regularizer.

Extensive experiments on synthetic and real-world datasets demonstrate the superiority of our method against several

state-of-the-art baselines.

Index Terms—Graph data mining, graph neural network, self-supervised learning, disentangled representation learning

Ç

1 INTRODUCTION

GRAPH structured data is ubiquitous in the real world, e.g.,
social networks, biology networks, traffic networks, etc.

Recently, graph neural networks (GNNs) have become
increasingly prevalent in learning graph representations in a
supervised manner, demonstrating their strength in a wide
variety of research fields [1], [2], [3], [4]. GNNs require task-
dependent annotated labels to learn effective representa-
tions, which are extremely scarce, or even unavailable in
practice, thusmotivating the advent of self-supervised graph
representation learning.

Contrastive learning, as a discriminative approach pulling
similar samples close and pushing dissimilar samples far
away, has become a dominant strategy in self-supervised
graph representation learning [5], [6], [7], [8], [9], [10], [11].
Despite their notable successes, the existing graph contrastive
learning methods generally adopt a holistic scheme, i.e., the
learned representations characterize graphs as a perceptual

whole, ignoring the nuances between different aspects of the
graph. In fact, the formation of a graph typically follows a
relational process in the real world, driven by many complex
latent factors. For example, in social networks, a social group
may have several communities originated fromdifferent rela-
tions (e.g., friends, colleagues, etc.) or interests (e.g., sports,
games, etc.) [12]. And a molecular graph may consist of vari-
ous groups of atoms and bonds representing different func-
tional units [13]. The complex relations among the multiple
latent factors bring an urge for disentangling these factors in
contrastive graph representation learning, which remains
unexplored by the existing holistic works. As a result, the
graph representations learned by the existing methods con-
tain a mixture of entangled factors, harming interpretability
and leading to suboptimal performance for predictive tasks
involvingwhole graph representations.

In this paper, we propose to learn disentangled contras-
tive graph representation. Although disentangled represen-
tation learning, which aims to characterize the various
underlying explanatory factors behind the observed data in
different parts of the factorized representations [14], [15], has
been demonstrated to be more explainable [12] and general-
izable [14], disentangled graph contrastive learning faces the
following three challenges. (1) Tailored graph encoder for
disentangled contrastive learning. The graph encoder should
be carefully designed so that it can be sufficiently expressive
to infer the disentangled latent factors in the graph. (2) Tai-
lored discrimination tasks designed for disentangled graph
contrastive learning. Since task-dependent labels are not
available in the self-supervised setting, disentangled graph
contrastive learning can only utilize the limited amount of
self-supervision information. This implies that the discrimi-
nation tasks should be well-designed for disentangled
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contrastive representation learning on graphs. (3) Tailored
training scheme to enforce the independence of the represen-
tations. The disentangled graph representations are expected
to capture mutually exclusive information in terms of the
latent factors. Therefore, the statistical independence among
different latent representations should be effectively formu-
lated, which can promote the quality of disentangled repre-
sentations of the graph.

To tackle these challenges, we propose a novel indepen-
dence promoted disentangled graph contrastive learning
model (IDGCL) capable of disentangled contrastive learning
on graphs. In particular, we first design a disentangled graph
encoder whose key ingredient is a multi-channel message-
passing layer. Each channel is tailored to aggregate features
only from one disentangled latent factor. Then a separate
readout operation in each channel summarizes the specific
aspect of the graph according to the corresponding latent fac-
tor, so as to produce the disentangled graph representation.
Next, we conduct contrastive learning in each representation
subspace characterized by each factor independently instead
of in the whole representation space. This novel factor-wise
contrastive approach can ensure that each disentangled fac-
tor of the vectorized representations is sufficiently discrimi-
native only under one specific aspect of the whole graph.
Thus the representations are encouraged to be disentangled
and best characterize the aspect pertinent to a latent factor of
the graph. In addition, to further promote the independence
among different latent representations, we eliminate the sta-
tistical dependence among different channels of the repre-
sentations with Hilbert-Schmidt Independence Criterion
(HSIC) [16], a kernel-based metric. The factor-wise contras-
tive representation learning and independence regulariza-
tion are jointly optimized in a unified framework, so that the
disentangled graph encoder can produce better disentangled
graph representations. Comparedwith the existingmethods,
our proposed model encodes a graph with multiple disen-
tangled representations, making it possible to explore the
meaning of each channel, which benefits inmore explainabil-
ity for producing graph representations.

We conduct extensive experiments on both synthetic
graph dataset and empirical well-known graph bench-
marks. The results show that the representations learned
from IDGCL can achieve substantial performance gains on
the downstream graph classification task compared with
various state-of-the-art baselines.

The contributions of this paper are summarized as
follows:

� We propose a novel independence promoted disen-
tangled graph contrastive learning model (IDGCL),
which is able to learn disentangled graph representa-
tion via factor-wise contrastive learning and indepen-
dence regularization. To the best of our knowledge, we
are the first to studydisentangled self-supervised graph
representation learningwith independence promotion.

� We propose a disentangled graph encoder to capture
multiple aspects of graphs through learning disen-
tangled latent factors on graphs. We further present
the factor-wise contrastive learning approach on tai-
lored discrimination tasks in terms of each latent fac-
tor independently.

� We present a kernel-based Hilbert-Schmidt Indepen-
dence Criterion (HSIC) to measure dependence
among the representations in terms of different latent
factors effectively and accurately. The factor-wise
contrastive learning and independence regularization
are jointly optimized in a unified framework so that
the learned representation can better capture predic-
tive andmutually independent information.

� We conduct extensive experiments to verify the effi-
cacy of our proposed model for the graph classifica-
tion task. The results on several graph classification
datasets demonstrate that IDGCL achieves state-of-
the-art performance by significantly outperforming
the baselines.

This manuscript is an extension of our paper published
at NeurIPS 2021 [17]. Compared with the conference ver-
sion, we make significant contributions from the following
aspects:

� The newly proposed IDGCL model is able to learn
disentangled self-supervised graph representation
via explicit enforcing independence between the
latent representations so as to improve the quality of
disentangled graph representations.

� The proposed independence regularization can mea-
sure dependence among the representations in terms
of different latent factors accurately and without
inducing high time complexity costs.

� IDGCL can simultaneously integrate factor-wise con-
trastive learning and independence among different
representations into a unified framework for joint
optimization.

� More extensive experiments demonstrate that IDGCL
is able to outperform baseline approaches and the
original model proposed in the earlier conference
paper.

We introduce the problem formulation and preliminaries
in Section 2. In Section 3, we describe the details of our pro-
posed method. Section 4 presents the experimental results,
including quantitative and qualitative comparisons. We
review the related work in Section 5. Finally, we conclude
our work in Section 6.

2 PROBLEM FORMULATION AND PRELIMINARIES

2.1 Problem Formulation

Let G ¼ fGigNi¼1 be a graph dataset with N graphs. The key
of most self-supervised graph representation learning meth-
ods, including ours, is to derive a graph encoder fð�Þ, which
outputs a d-dimensional representation zi ¼ fðGiÞ 2 Rd for
each input graph, such that Z ¼ fzigNi¼1 best describes G. In
this work, we aim to learn a multi-channel graph encoder
fuð�Þ with parameters u, so that the output zi is a disen-
tangled representation, i.e., fuð�Þ ¼ ffðkÞu ð�ÞgKk¼1, where K is
the number of channels. To be specific, zi is expected to be
composed of K independent components, i.e., zi ¼ ½zi;1; zi;2;
. . . ; zi;K �, where zi;k ¼ f

ðkÞ
u ðGiÞ 2 RDd, k 2 ½1; K�;Dd ¼ d=K,

assuming that there are K latent factors behind the graph
instances to be disentangled. The kth component zi;k is for
characterizing the aspect of Gi that is pertinent to factor k
accurately. We also assume that the value of zi;k will be
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merely a white noise vector if the input graph Gi does not
contain any information of factor k. Here we follow the
notion in disentangled representation learning litera-
ture [12], [14], [15], [18], [19], which assumes the existence
of various natural factors that vary independently behind
the observed data. The goal is to learn factorized representa-
tions where each of them independently reflects the expres-
sive information specific to only one single ground truth
factor. Therefore, the setting where the raw data has highly
related features is out of scope for this work.

2.2 Preliminaries on Contrastive Learning

Unlike generative models, contrastive learning is an
instance-wise discriminative approach that aims at making
similar instances closer and dissimilar instances far from
each other in representation space [20], [21]. It treats each
instance in the dataset as a distinct class of its own and
trains a classifier to distinguish between individual instance
classes [22], [23]. Given a dataset X ¼ fxigNi¼1, each instance
xi is assigned with a unique surrogate label yi, since no
ground-truth labels are given. yi is often regarded as the ID
of the instance in the dataset, i.e., yi ¼ i. So the probability
classifier is defined as

puðyijxiÞ ¼
exp fðvvvvvvvi; vvvvvvv0yiÞPN
j¼1 exp fðvvvvvvvi; vvvvvvv0yjÞ

; (1)

where u denotes the parameters of the encoder. Both vvvvvvvi and
vvvvvvv0yi are the embeddings from xi, which are generated from
two different encoders [24], or a shared encoder [25]. Before
being passed into the encoder, the input xi could undergo
data augmentations [25], which play a critical role in defin-
ing effective predictive tasks for learning the encoder. f is
the similarity function, often adopting cosine similarity

with temperature t [26], i.e., fðvvvvvvvi; vvvvvvv0yiÞ ¼ vvvvvvv0>yi vvvvvvvi=t, assuming
the embeddings are ‘2-normalized. Then the learning objec-
tive is to maximize the joint probability

QN
i¼1 pðyijxiÞ over

the dataset, namely minimize the negative log-likelihood
function

PN
i¼1 ‘i, if let ‘i ¼ �log pðyijxiÞ. Note that loss ‘i

could be NCE loss [22], InfoNCE loss [27], or NT-Xent loss
[25]. The encoder will be encouraged to learn a representa-
tion space where samples (e.g., augmented data) from the
same instance (e.g., an image, a graph) are pulled closer and
samples from different instances are pushed apart [20]. For
convenience, we follow the settings above in this work.

3 METHODOLOGIES

In this section, we present the proposed IDGCL model. The
framework of IDGCL is shown in Fig. 1. In Section 3.1, we
introduce the disentangled graph encoder to identify the
complex latent factors and capture multiple aspects of
graphs. Then in Section 3.2, we propose a factor-wise con-
trastive learning approach to conduct instance discrimina-
tion under each latent factor independently. We derive the
Evidence Lower Bound in Section 3.3 and introduce the reg-
ularizer for independence promotion in Section 3.4. Finally
we describe the objective, which jointly optimizes factor-
wise contrastive learning and independence promotion in a
unified framework in Section 3.5, followed by discussions
regarding time complexity and number of parameters in
Sectiion 3.6.

3.1 Disentangled Graph Encoder

The key of the disentangled graph encoder is to produce the
factorized graph representation zi ¼ ½zi;1; zi;2; . . . ; zi;K � for
each input graph Gi 2 G. Based on the factorized represen-
tation, we can infer the latent factors of the graph.

Fig. 1. The framework of our proposed IDGCLmodel. (1) The input graph Gi undergoes graph augmentations to produce G0i. Then Gi and G0i are fed
into the shared disentangled graph encoder fuð�Þ. (2) In the encoder fuð�Þ, the node features H0 are first aggregated by L message-passing layers
and then taken as the input of a multi-channel message-passing layer. (3) Based on the disentangled graph representation zi, the factor-wise con-
trastive learning aims to maximize the agreement under each latent factor. (4) The disentangled representations of different latent factors are encour-
aged to be sufficiently independent by using the HSIC regularization. The joint optimization of factor-wise contrastive learning and independence
regularization provides feedback for the encoder to improve the disentanglement. The illustration assumes that there are three latent factors, corre-
sponding to the three channels.
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Generally, GNNs use graph structure and node features
to learn the representation vector hhhhhhhv of node v with a mes-
sage-passing mechanism, i.e., iteratively updating the node
representation by aggregating representations of its neigh-
bors. The propagation of the lth layer is formulated as

hhhhhhhl
v ¼ COMBINElðhhhhhhhl�1

v ;AGGREGATElðfhhhhhhhl�1
u : u 2 NðvÞgÞÞ;

(2)

where hhhhhhhl
v is the representation of node v at the lth layer and

hhhhhhh0
v is initialized with node features. NðvÞ is the neighbor-

hood to node v. We use the term GNN to indicate the mes-
sage-passing layer in Eq. (2).

Let Hl ¼ fhhhhhhhl
vjv 2 V g be the node embeddings after the

lth GNN, where V denotes the node set of the graph.
After applying L traditional message-passing layers, we
propose a graph-disentanglement layer to learn the disen-
tangled representations. The goal is to extract features
specific to each latent factor with a separate channel. Spe-
cifically, we adopt K separate channels to identify the
complex heterogeneous latent factors and capture multi-
ple aspects of the input graph. For each channel, we first
utilize a GNNk to propagate information with its own
parameters: HLþ1

k ¼ GNNkðHL; AÞ, where A is the adja-
cency matrix of the input graph. HLþ1

k is the node embed-
dings which is only pertinent to the kth latent factor. Then
the READOUT function (i.e., pooling function) of each
channel is used to summarize all the obtained node repre-
sentations into a fixed-length graph-level representation:
hhhhhhhGi;k ¼ READOUTkðfHLþ1

k gÞ. Finally, each channel out-
puts the factorized graph representation with a separate
MLP: zi;k ¼ MLPkðhhhhhhhGi;kÞ.

Compared with the existing inherently holistic graph
encoders, our disentangled graph encoder consists of K
channels, rending the possibility to identify the complex
heterogeneous latent factors and capture multiple aspects of
graphs.

3.2 Disentangled Factor-Wise Contrastive Learning

Unlike the existing contrastive learning methods, IDGCL
designs a novel factor-wise instance discriminative task and
learns to solve this task under each latent factor indepen-
dently. This design not only makes similar samples closer
and dissimilar samples far from each other in the represen-
tation space, but also encourages the learned representation
to incorporate factor-level information for disentanglement.

Specifically, the formation of real-world graphs is usually
driven by multiple latent heterogeneous factors. So the
instance discriminative task should be represented as the
expectation of several subtasks under the latent factors

puðyijGiÞ ¼ EpuðkjGiÞ puðyijGi; kÞ½ �: (3)

Here puðkjGiÞ is the probability distribution over latent fac-
tors for the input graph Gi. puðyijGi; kÞ denotes the instance
discrimination subtask under the kth latent factor.

First, given the representation zi of Gi derived from the
disentangled graph encoder fuð�Þ, we present a prototype-
based method to obtain puðkjGiÞ. We introduce K latent fac-
tor prototypes fckgKk¼1, and the probability of the kth latent
factor reflected in Gi is parameterized as

puðkjGiÞ ¼ exp fðzi;k; ckÞPK
k¼1 exp fðzi;k; ckÞ

; (4)

where f is the cosine similarity with temperature t, i.e.,
fða;bÞ ¼ Cosineða;bÞ=t and Cosineða;bÞ ¼ a>b=ðkak2kbk2Þ.

Then, we define the instance discrimination subtask
under the kth latent factor as

puðyijGi; kÞ ¼
exp fðzi;k; z0yi;kÞPN
j¼1 exp fðzi;k; z0yj;kÞ

; (5)

where zi;k and z0yi;k are the disentangled representations
produced by the shared graph encoder, and yi is the
unique surrogate label (see Section 2) of the graph Gi. We
follow [22], [23] to implement yi as the ID of the graph in
the dataset, i.e., yi ¼ i. For notation convenience, we do
not distinguish yi and i hereafter when there is no risk of
confusion.

Next, we describe the process to get z0i;k (i.e., z0yi;k in
Eq. (5)). First, the input graph Gi undergoes graph data aug-
mentations to obtain its correlated views G0i, and they form
a positive pair. Data augmentation is expected to create
novel and realistically rational data by applying certain
transformations that do not affect the label, and plays a criti-
cal role in defining effective predictive tasks [11], [25]. We
follow [11] to adopt four types of graph augmentation strat-
egies, including node dropping, edge perturbation, attribute
masking, and subgraph sampling. More details of graph
augmentations can be found in appendix, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TKDE.2022.3206875.
Then, the augmented graph G0i is also fed into the shared
disentangled graph encoder fuð�Þ to produce z0i;k (i.e., z0yi;k).
Given the disentangled representations zi;k and z0i;k of the Gi

and G0i respectively, we conduct factor-wise contrastive
learning for each latent factor independently as Eq. (5).

3.3 Evidence Lower Bound (ELBO)

Wepresent the objective of ourmethod. Following the existing
methods [22], [23], we aim to maximize the joint probabilityQN

i¼1 pðyijGiÞ over the graph dataset G ¼ fGigNi¼1. We learn
themodel parameters u bymaximizing the log-likelihood

u� ¼ argmax
u

XN
i¼1

log puðyijGiÞ

¼ argmax
u

XN
i¼1

log EpuðkjGiÞ puðyijGi; kÞ½ �: (6)

However, directly maximizing the log-likelihood function is
difficult because of the latent factors. Therefore, we instead
optimize the evidence lower bound (ELBO) of the log-likeli-
hood function given by Theorem 1.

Theorem 1. The log likelihood function of each graph
log puðyijGiÞ is lower bounded by the ELBO: Lðu; iÞ ¼
EquðkjGi;yiÞ½log puðyijGi; kÞ� �KLðquðkjGi; yiÞ k puðkjGiÞÞ.
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Proof.

log puðyijGiÞ
¼ EquðkjGi;yiÞ log puðyijGiÞ½ �

¼ EquðkjGi;yiÞ log
puðyi; kjGiÞ
puðkjGi; yiÞ

� �

¼ EquðkjGi;yiÞ log
puðyi; kjGiÞ
quðkjGi; yiÞ

quðkjGi; yiÞ
puðkjGi; yiÞ

� �

¼ EquðkjGi;yiÞ log
puðyi; kjGiÞ
quðkjGi; yiÞ

� �
þEquðkjGi;yiÞ log

quðkjGi; yiÞ
puðkjGi; yiÞ

� �

¼ EquðkjGi;yiÞ log
puðyi; kjGiÞ
quðkjGi; yiÞ

� �
þKLðquðkjGi; yiÞkpuðkjGi; yiÞÞ

� EquðkjGi;yiÞ log
puðyi; kjGiÞ
quðkjGi; yiÞ

� �

¼ EquðkjGi;yiÞ log puðyijGi; kÞ puðkjGiÞ
quðkjGi; yiÞ

� �
¼ EquðkjGi;yiÞ log puðyijGi; kÞ½ � �KL qu kjGi; yið Þ k pu kjGið Þð Þ
¼ Lðu; iÞ:

KLð�k�Þ means Kullback–Leibler divergence [28]. The
equality holds when KLðquðkjGi; yiÞ k puðkjGi; yiÞÞ ¼ 0.
Note that in the third-to-last line above, we have used
puðyi; kjGiÞ ¼ puðkjGiÞpuðyijGi; kÞ. tu
To make the ELBO as tight as possible, we require that

quðkjGi; yiÞ is close to puðkjGi; yiÞ, whose detailed implemen-
tations are provided in Eqs. (9) and (7). In the ELBO Lðu; iÞ,
puðyijGi; kÞ and puðkjGiÞ have been introduced in Eqs. (5)
and (4), respectively, and quðkjGi; yiÞ is a variational distri-
bution to infer the posterior distribution of the latent factors
after observing both Gi and its correlated view G0yi .

We introduce a variational distribution quðkjGi; yiÞ to
infer the posterior probability puðkjGi; yiÞ that is defined
with Bayes’ theorem as follows:

puðkjGi; yiÞ ¼ puðkjGiÞpuðyijGi; kÞPK
k¼1 puðkjGiÞpuðyijGi; kÞ

: (7)

puðkjGi; yiÞ is the probability of the kth latent factor pertinent
to both Gi and the augmented G0i simultaneously. Com-
pared with the prior distribution puðkjGiÞ in Eq. (4),
puðkjGi; yiÞ incorporates more useful information (i.e., fac-
tor-wise similarity) from puðyijGi; kÞ. Although both puðkjGiÞ
and puðkjGi; yiÞ are designed to infer the latent factor distri-
bution, puðkjGiÞ is calculated only given the graph Gi, but
puðkjGi; yiÞ is calculated after observing Gi, the augmented
version G0yi , and their similarities under the specific latent
factor.

However, we cannot compute the posterior probability
tractably because of the term puðyijGi; kÞ. If we directly cal-
culate puðyijGi; kÞ according to Eq. (5), all the instances in
the dataset G are needed for computing the denominator in
Eq. (5) , which could be computationally prohibitive [22],
[23], [29]. To tackle this obstacle, several strategies are pro-
posed in the literature, including memory bank [22], [24],
dynamic dictionary [30], NT-Xent loss [25]. Here, we adopt
NT-Xent loss on a minibatch B � G. So in practice, the
instance discrimination under each latent factor is calcu-
lated by

p̂uðyijGi; kÞ ¼
exp fðzi;k; z0i;kÞPjBj

j2B;j6¼i exp fðzi;k; z0j;kÞ
: (8)

We approximate the posterior probability puðkjGi; yiÞ with a
variational distribution defined as

quðkjGi; yiÞ ¼ puðkjGiÞp̂uðyijGi; kÞPK
k¼1 puðkjGiÞp̂uðyijGi; kÞ

: (9)

Our method can inherently encourage disentanglement
since factorizing the instance discrimination into K factor-
wise subtasks will enforce the independence of the learned
graph representation zi. Besides, quðkjGi; yiÞ is computed
based on kth and other K � 1 latent factors. Thus, the graph
encoder is forced to preserve exclusive information in each
channel to get more accurate approximation to the poste-
rior, if a tighter ELBO is expected. The strong inductive
biases in our proposed method encourage to learn disen-
tangled graph representations that match the ground truth
factors behind the graphs.

3.4 Statistical Independence of Representations

Enhancing the independence of the disentangled graph rep-
resentations explicitly will encourage the graph encoder to
better capture predictive and mutually independent infor-
mation in terms of different latent factors, which can lead to
improved performance for downstream tasks. Next we
elaborate on the details of independence regularization.

Recall that the goal of our method is to empower the
graph encoder to produce the disentangled graph represen-
tations zi ¼ ½zi;1; zi;2; . . . ; zi;K � for each input graph Gi 2 G
that the K channels capture mutually exclusive information
in terms of the latent factors. This means the statistical inde-
pendence among the disentangled graph representations
should be further promoted to enhance the disentangle-
ment. For measuring the independence among the disen-
tangled graph representations, it is infeasible to resort to
histogram-based measures unless the dimensionality of rep-
resentations is small enough [31]. Therefore, we introduce
Hilbert-Schmidt Independence Criterion (HSIC) [16] for
promoting the representations of different factors to be suf-
ficiently independent.

Specifically, let z�;k be the Dd-dimensional (Dd ¼ d=K)
random variable denoting the disentangled representations
corresponding to the latent factor k. Consider a measurable,
positive definite kernel kk on the domain of random variable
z�;k and denote the corresponding Reproducing Kernel Hil-
bert Spaces (RKHS) by Hk. fkð�Þ is the transformation func-
tion mapping z�;k intoHk with respect to the kernel kk.

For a pair of latent factors kA; kB 2 ½1; K�, kA 6¼ kB, z�;kA
and z�;kB are jointly drawn from a distribution pðz�;kA ; z�;kBÞ.
Cz�;kA ;z�;kB , the cross-covariance operator in the RKHS of kkA
and kkB , is defined as follows:

Cz�;kA ;z�;kB ¼ Epðz�;kA ;z�;kB Þ ðfkA
ðz�;kAÞ � mz�;kA

Þ>�
h
ðfkB
ðz�;kBÞ � mz�;kB

Þ
i
; (10)

where mz�;kA
¼ Epðz�;kA Þ½fkA

ðz�;kAÞ� and mz�;kB
¼ Epðz�;kB Þ½fkB

ðz�;kBÞ�. HSIC, the Hilbert-Schmidt norm of the associated
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cross-covariance operator, is defined as

HSICðz�;kA ; z�;kBÞ :¼ kCz�;kA ;z�;kB k
2
HS; (11)

where kMk2HS ¼
P

i;j M
2
i;j. The independence can be deter-

mined by the following proposition.

Proposition 1. Assume E½kz�;kA ðz�;kA ; z�;kAÞ� < 1 and

E½kz�;kB ðz�;kB ; z�;kBÞ� < 1, and kz�;kA kz�;kB is a characteristic
kernel, then

HSICðz�;kA ; z�;kBÞ ¼ 0, z�;kA ?? z�;kB : (12)

In practice, we employ an unbiased estimator of HSIC
following [32]

HSICðz�;kA ; z�;kBÞ ¼
1

mðm� 3Þ ½trð
eU eV T Þ þ 1T eU11T eV T1

ðm� 1Þðm� 2Þ
� 2

m� 2
1T eU eV T1� (13)

where eU , eV are the Gram matrices with kz�;kA , kz�;kB , whose
diagonal entries are set to zero. We use the radial basis func-
tion (RBF) kernel in our implementation.

The main advantages of adopting the above criterion to
measure the dependence of graph representations are three-
fold [16], [33]. (1) Since graph representations are mapped
into the RKHS to measure the dependence, the correlations
measured in that space correspond to high-order joint
moments between the original distributions and more com-
plex nonlinear dependence can be addressed. (2) HSIC is
effective yet efficient to estimate the dependence of graph
representations since it avoids to estimate the joint distribu-
tion of the random variables explicitly. (3) The estimator we
adopted for HSIC is unbiased [32], as opposed to other
empirical estimates [16].

3.5 Optimization

Finally, we seek to learn the parameters u of the disentangled
graph encoder under the unified framework of factor-wise
contrastive learning and independence promotion. We opti-
mize the following objective function by combining the ELBO
andHSIC regularizer usingmini-batch gradient descent

min
u
�Lðu;BÞ þ �Lreg (14)

where � � 0 is a hyper-parameter that controls the impact of
the regularizer. More specifically, the ELBO Lðu;BÞ over a
mini-batch B is calculated by

Lðu;BÞ ¼
X
i2B
Lðu; iÞ; (15)

where Lðu; iÞ is defined in Theorem 1. The HSIC regularizer
Lreg for promoting the statistical independence among the
disentangled graph representations is calculated by

Lreg ¼
X

1	kA <kB	K
HSICðz�;kA ; z�;kBÞ: (16)

Note that the HSIC regularizer can be easily calculated since
it is only based on the output disentangled graph represen-
tation (i.e., the parameters u of the disentangled graph
encoder) without other assumptions.

We use IDGCL (Independence promoted Disentangled
Graph Contrastive Learning) to refer to our proposed model
and its detailed training procedure is shown in Algorithm 1.

Algorithm 1. The Training Procedure of IDGCL

Input: A graph datasetG ¼ fGigNi¼1
Output: The disentangled representations Z ¼ fzigNi¼1
1: function DISENTANGLEDENCODER (Gi)
2: for l 1 to L do
3: Hl ¼ GNNlðHl�1; AÞ
4: end for
5: for k 1 toK do ⊳ separateK channels
6: HLþ1

k ¼ GNNkðHL;AÞ
7: zi;k ¼ MLPkðREADOUTkðfHLþ1

k gÞÞ
8: end for
9: returnzi ⊳ disentangled graph representation
10: end Function
11: for sampled minibatch B ¼ fGigjBji¼1 do
12: for Gi 2 B do ⊳ disentangled graph encoding
13: zi = DisentangledEncoder(Gi)
14: G0i ¼ GRAPHAUGMENTATIONðGiÞ
15: z0i = DISENTANGLEDENCODER(G0i)
16: Calculate puðkjGiÞ by Eq. (4)
17: end for
18: for k 1 toK do ⊳ factor-wise contrastive learning
19: for i 1 to jBj and j 1 to jBj do
20: s

ðkÞ
i;j ¼ fðzi;k; z0j;kÞ ⊳ similarity of kth factor

21: end for
22: Calculate p̂uðyijGi; kÞ by Eq. (8)
23: end for
24: for Gi 2 B do ⊳ optimization objective
25: Calculate quðkjGi; yiÞ by Eq. (9)
26: Calculate ELBO Lðu; iÞ
27: end for
28: Calculate ELBO over a minibatch Lðu;BÞ by Eq. (15) and

the independence regularizer Lreg by Eq. (16)
29: Update u to minimize �Lðu;BÞ þ �Lreg by Eq. (14)
30: end for
31: Z ¼ fzigNi¼1, zi ¼ DISENTANGLEDENCODERðGiÞ, Gi 2 G

3.6 Discussions

3.6.1 Time Complexity Analysis

The time complexity of our proposed IDGCL is OðLjEjdþ
LjV jd2Þ, where jV j, jEj denotes the total number of nodes
and edges in the graphs, d is the dimensionality of the repre-
sentation, and L is the number of message-passing layers of
disentangled graph encoder. Specifically, we instantiate our
method by adopting GIN [4] as the message-passing layers
so the time complexity of each layer in the disentangled
graph encoder is OðjEjdþ jV jd2Þ. As for the factor-wise con-
trastive learning, the positive and negative samples are
drawn from graph data augmentations and graphs from the
same minibatch respectively, so the time complexity is
OðjBj2dÞ, where jBj is the batch size. The calculation of HSIC
regularizer in IDGCL has a time complexity of OðjBj2d2Þ.
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Notice that jBj and d are small constants that are unrelated
to the dataset size.

In comparison, the time complexity of other representa-
tive self-supervised graph learning methods (e.g., GraphCL
and MVGRL, see the Experiment Section for details) is also
OðLjEjdþ LjV jd2Þ. Therefore, the time complexity of our
IDGCL is on par with these baselines. Some unsupervised
baseline, such as GVAE, has a OðLjEjdþ LjV jd2 þ jV j2dÞ
time complexity due to the reconstruction of the adjacency
matrix in the VAE framework. Since OðjEjÞ 
 OðjV j2Þ for
sparse graphs, and L and d are small constants, our pro-
posed method is much more scalable than GVAE.

3.6.2 Number of Parameters Analysis

For our proposed IDGCL, the number of parameters is
OðLd2Þ, where L is the number of message-passing layers of
disentangled graph encoder, and d is the dimensionality of
the representation. Specifically, because we adopt GIN as
the message passing layers, the number of parameters of
the disentangled graph encoder is OðLd2Þ. The number of
parameters of K latent factor prototypes is OðK � ðd=KÞÞ ¼
OðdÞ. The independence regularization does not involve
extra learnable parameter. For the baselines that use GNNs
(e.g., GCN or GIN) as the graph encoder, including GVAE,
InfoGraph, GCC, MVGRL, and GraphCL, the number of
parameters is OðLd2Þ. Therefore, the number of parameters
of the proposed method and the baselines are comparable.

4 EXPERIMENTS

In this section, to demonstrate the effectiveness of our pro-
posed IDGCL model, we empirically compare IDGCL with
state-of-the-art (SOTA) methods for graph classification
tasks. Concretely, in Section 4.1, we report the results of
unsupervised learning settings. In Section 4.2, we conduct
experiments on semi-supervised settings. Finally, we report
several analyses including ablation studies in Section 4.3.

4.1 Unsupervised Learning

We first evaluate our model in the unsupervised representa-
tion learning following the common evaluation protocols in
the existing literature [5], [11], [34], [35], where graph repre-
sentations are trained in an unsupervised setting and then
fed into a downstream SVM classifier.

4.1.1 Experimental Setup

To demonstrate the advantages of our method, we conduct
experiments on ninewell-known graph classification datasets
including five bioinformatics datasets, i.e., MUTAG, PTC-
MR, PROTEINS, NCI1 and four social network datasets, i.e.,

IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY, REDDIT-
MULTI-5K, and COLLAB. The statistics of the datasets are
summarized in Table 1.

We compare our proposed method with the following
two groups of baselines. One group of baselines are graph
kernels including Shortest Path Kernel (SP) [36], Graphlet
Kernel (GK) [37], Weisfeiler-Lehman Sub-tree Kernel (WL)
[38], Deep Graph Kernels (DGK) [35], and Multi-Scale Lap-
lacian Kernel (MLG) [39]. The other group of baselines are
classical unsupervised graph representation learning meth-
ods including node2vec [40], sub2vec [41], graph2vec [34],
GVAE [42], and more recent contrastive graph representa-
tion learning methods including InfoGraph [5], GCC [10],
MVGRL [9], GraphCL [11], JOAO [43]. For our proposed
method, we consider two versions: the full IDGCL model
and DGCL, a variant of our model when � ¼ 0 [17].

We implement our models in PyTorch and use Stochastic
Gradient Descent (SGD) for the optimization. We use
GIN [4] as the message-passing layers since it is shown to
be one of the most expressive message-passing GNNs. The
number of message-passing layers is chosen from
f2; 3; 4; 5g. The dimensionality of the representations d is
chosen from f64; 128; 256; 512g. Note that the ground-truth
number of the latent factors is unknown, so we search the
number of channels K from 1 to 10. For our IDGCL, the
hyper-parameter � controlling the impact of the HSIC regu-
larizer is chosen from f0:0001; 0:001; 0:01; 0:1g. For a fair
comparison, the hyper-parameters of the graph augmenta-
tions are kept consistent with GraphCL [11]. For the unsu-
pervised setting, we use SVM as the downstream classifier.
We adopt the 10-fold cross validation accuracy, and report
the mean accuracy (%) with standard variation after five
repeated runs.

4.1.2 Results on Real Benchmark Graphs

The results are reported in Table 2. We can see that the
graph contrastive learning methods generally outperform
the graph kernel methods or the classical unsupervised
methods, which verify the effectiveness of contrastive learn-
ing. Our disentangled method IDGCL consistently achieves
the best performances compared with other contrastive
baselines (e.g., MVGRL, GrpahCL) and classical unsuper-
vised baselines (e.g., graph2vec, GVAE), demonstrating the
superiority of disentanglement. For example, IDGCL
increases the classification accuracy by 2.6% and 1.6%
against the strongest baselines on PTC-MR and NCI1
respectively. And IDGCL improves upon DGCL by a mar-
gin of 0.4% and 0.5% on PTC-MR and NCI1, suggesting that
encouraging independence between latent factors is benefi-
cial to learn informative graph representations. We attribute

TABLE 1
The Statistics of the Datasets Used in the Unsupervised Learning Setting

MUTAG PTC-MR PROTEINS NCI1 IMDB-B IMDB-M RDT-B RDT-M5K COLLAB

#Graphs 188 344 1,113 4,110 1,000 1,500 2,000 4,999 5,000
#Classes 2 2 2 2 2 3 2 5 3
Avg #nodes 17.9 14.3 39.1 29.9 19.8 13.0 429.6 508.5 74.5
Avg #edges 19.8 14.7 72.8 32.3 96.5 65.9 497.8 594.9 2457.8

#Graphs is the number of graphs in the dataset. Avg #nodes/#edges are the average number of nodes and edges in a graph of the dataset, respectively.
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the results to the fact that these existing methods fail to
identify the underlying latent factors, which are important
in preserving graph properties, and therefore cannot learn
the disentangled representations. In contrast, we disentan-
gle graph representations to explicitly consider the entan-
glement of heterogeneous factors. When compared to graph
kernel methods, our method also has the best accuracy on
all the datasets. Notice that none of these kernel methods is
consistently competitive across all of the datasets, as
opposed to our method.

4.1.3 Results on Synthetic Graphs

Since the formation processes of real-world graphs are usu-
ally unobserved to us, it is difficult to obtain the semantic
information of latent factors, which is the common case in the
graph disentanglement literature [12], [19]. To further investi-
gate the behavior of ourmethod,we generate a synthetic data-
set consisting of 1,000 graphs with known latent factors.
Specifically, we generate synthetic graphs using the stochastic
block model [44]. Each graph contains four communities and
each community consists of 10 nodes.Wedefine the latent fac-
tor as the probability p that two nodes are connected in a com-
munity. p can take value from f0:2; 0:3; . . . ; 0:9g, meaning that
there are eight latent factors in the dataset in total. The proba-
bility for each community is drawn from the eight possible
choices without replacement. Two nodes in different commu-
nities are connected with probability 0.05. The rows of the
adjacency matrices are used as node features, and the
ground-truth communities are used as labels, i.e., there are 8
classes and each graph has 4 labels. We train IDGCL, DGCL
and two baselines, i.e.,MVGRLandGraphCL on the synthetic
dataset with self-supervision. Then we adopt the SVM classi-
fier on the learned graph representations and use the Micro-
F1 (%) as the evaluationmetric.

We vary the number of channels K of our method and
report the results in Fig. 3. Our methods IDGCL and DGCL
report better performance than the baselines.We also find that
asK increases from 1 to 8, the result of ourmethods improves,
which verifies the importance of disentangling latent factors.

After reaching the peak at K ¼ 8, the performance slightly
drops, but in general, our method is not very sensitive when
K is not too large. WhenK is equal to the ground-truth num-
ber of latent factors, our methods achieve the best results and
IDGCL further improves on DGCL, indicating that our
method can capture the underlying structure of this simula-
tion datasetwith the disentangled representations.

Besides the quantitative evaluation, we also provide a
qualitative evaluation by plotting the correlation of the latent
features in Fig. 2. The figure shows the absolute values of the
correlation between the elements of 128-dimensional graph
representation obtained from MVGRL, GraphCL, our DGCL
and IDGCL (K ¼ 8) on the synthetic dataset. We can see from
the results that the graph representations of MVGRL and
GraphCL are entangled. In comparison, the correlation of
IDGCL shows eight diagonal blocks, meaning that the chan-
nels of IDGCL likely extract mutually exclusive information
and output disentangled representations. From Figs. 2c and
2d, we can observe that IDGCL can further reduce the correla-
tion of different blocks compared to DGCL. The results indi-
cate that optimizing our statistical independence metric can
further promote the output representations of different factors
to be sufficiently independent for disentanglement. To better
show the effectiveness of the proposed method, we further
consider the following evaluation way. Specifically, we first
cluster the 128 dimensions by the k-means algorithm [45]
(with 8 clusters) using the 128 rowvectors of the feature corre-
lation matrix, so that the cluster id of each dimension could
indicate the block id. Then, we calculate the ratio of the aver-
age feature correlation inside the block structure divided by
the average feature correlation outside the block structure.
Intuitively, a larger ratio denotes better disentanglement
quantitatively. Finally, the ratio is 2.20, 2.45, 2.87, and 22.49 for
MVGRL, GraphCL, DGCL, and IDGCL, respectively. The
results further demonstrate that the proposed IDGCL can out-
put disentangled graph representations compared with other
methods.

To further explore the properties of the disentangled
graph representations, we plot the graph distribution based

TABLE 2
Graph Classification Accuracy (%) of Our Proposed Method and Baselines in the Unsupervised Learning Setting

MUTAG PTC-MR PROTEINS NCI1 IMDB-B IMDB-M RDT-B RDT-M5K COLLAB

SP 85.2 � 2.4 58.2 � 2.4 75.1 � 0.5 73.0 � 0.2 55.6 � 0.2 38.0 � 0.3 64.1 � 0.1 39.6 � 0.2 –
GK 81.7 � 2.1 57.3 � 1.4 71.7 � 0.6 62.3 � 0.3 65.9 � 1.0 43.9 � 0.4 77.3 � 0.2 41.0 � 0.2 72.8 � 0.3
WL 80.7 � 3.0 58.0 � 0.5 72.9 � 0.6 80.0 � 0.5 72.3 � 3.4 47.0 � 0.5 68.8 � 0.4 46.1 � 0.2 –
DGK 87.4 � 2.7 60.1 � 2.6 73.3 � 0.8 80.3 � 0.5 67.0 � 0.6 44.6 � 0.5 78.0 � 0.4 41.3 � 0.2 73.1 � 0.3
MLG 87.9 � 1.6 63.3 � 1.5 76.1 � 2.0 80.8 � 1.3 66.6 � 0.3 41.2 � 0.0 – – –
node2vec 72.6 � 10.2 58.6 � 8.0 57.5 � 3.6 54.9 � 1.6 – – – – –
sub2vec 61.1 � 15.8 60.0 � 6.4 53.0 � 5.6 52.8 � 1.5 55.3 � 1.5 36.7 � 0.8 71.5 � 0.4 36.7 � 0.4 –
graph2vec 83.2 � 9.3 60.2 � 6.9 73.3 � 2.1 73.2 � 1.8 71.1 � 0.5 50.4 � 0.9 75.8 � 1.0 47.9 � 0.3 –
GVAE 87.7 � 0.7 61.2 � 1.8 – – 70.7 � 0.7 49.3 � 0.4 87.1 � 0.1 52.8 � 0.2 –
InfoGraph 89.0 � 1.1 61.7 � 1.4 74.4 � 0.3 76.2 � 1.1 73.0 � 0.9 49.7 � 0.5 82.5 � 1.4 53.5 � 1.0 70.7 � 1.1
GCC – – – – 72.0 49.4 89.8 53.7 78.9
MVGRL 89.7 � 1.1 62.5 � 1.7 – – 74.2 � 0.7 51.2 � 0.5 84.5 � 0.6 – –
GraphCL 86.8 � 1.3 63.6 � 1.8 74.4 � 0.5 77.9 � 0.4 71.1 � 0.4 50.7 � 0.4 89.5 � 0.8 56.0 � 0.3 71.4 � 1.2
JOAO 87.7 � 0.8 61.1 � 1.7 74.1 � 1.1 78.4 � 0.5 70.8 � 0.3 51.0 � 0.5 86.4 � 1.5 56.0 � 0.3 69.3 � 0.3

DGCL 92.1 � 0.8 65.8 � 1.5 76.4 � 0.5 81.9 � 0.2 75.9 � 0.7 51.9 � 0.4 91.8 � 0.2 56.1 � 0.2 81.2 � 0.3
IDGCL 92.5 � 0.6 66.2 � 1.3 77.1 � 0.2 82.4 � 0.3 76.1 � 0.2 52.3 � 0.4 91.9 � 0.3 56.3 � 0.2 81.3 � 0.3

In each column, the boldfaced score denotes the best result of all the methods and the underlined score represents the best result of baselines. “–” indicates the
result is not reported in the paper.
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on representations extracted from different channels with t-
SNE [46] in Fig. 4. For simplicity, we only take two latent
factors and two channels as the example, while the others
show similar patterns. Specifically, we plot the graph distri-
bution on a 2D plane based on the graphs with (denoted by
cyan points) and without (denoted by red points) the factor
p ¼ 0:2 or p ¼ 0:9 by the representations extracted from the
channel that is the only one among all channels whose out-
put representations are discriminative to the factor, i.e., the
1st channel for factor p ¼ 0:2 and the 5th channel for factor
p ¼ 0:9 in our experiments. Fig. 4 shows that different chan-
nels capture different latent factors of the graphs. In Figs. 4a
and 4b, we can observe whether the latent factor p ¼ 0:2 is
included in the graph can be discriminated obviously with
the representations extracted only from the 1st channel (as
shown in (a)), while they are mixed with representations
from the 5th channel (as shown in (b)). However, whether
the latent factor p ¼ 0:9 is included in the graph can be dis-
criminated with the representations extracted only from the
5th channel while they are hard to be separated with repre-
sentations from the 1st channel, which is the opposite to the
case of the latent factor p ¼ 0:2. Therefore, although it is dif-
ficult to figure out the specific meaning that each channel
represents without enough supervision, learning disen-
tangled graph representations by our method makes it pos-
sible to explore the meaning of each channel.

4.2 Semi-Supervised Learning

4.2.1 Experimental Setup

Furthermore, we evaluate our proposed method in the
semi-supervised learning. We first perform pre-training
with all training data without labels. Then we conduct fine-

tuning on the partially labeled training data and evaluation
on the validation/test sets.

We consider 8 graph property prediction datasets from
OGBG-MOL� in Open Graph Benchmark (OGB) [47], i.e.,
BACE, BBBP, TOX21, CLINTOX, SIDER, TOXCAST, MUV,
and HIV. The task is to predict the target molecular proper-
ties as accurately as possible. We adopt the evaluator and
dataset splits provided by OGB for a fair comparison. The
statistics of these datasets are provided in Table 3.

We compare our proposed method with the following
baselines. The naive baseline is training from scratch
without the pre-training stage, which we denote as “No
pre-train”. Besides, we consider three self-supervised
methods: edge-based reconstruction method EdgePred,
vertex feature masking & recovering method AttrMask-
ing, and sub-structure information preserving method
ContextPred [48]. They are designed based on certain

Fig. 3. Micro-F1 (%) of our proposed method and two baselines with dif-
ferent number of channelsK.

Fig. 2. An analysis of feature correlation on the synthetic graphs with eight latent factors. The figures show the absolute value of the correlations
between the elements of the representations learned by MVGRL, GraphCL, DGCL, and IDGCL with eight channels, respectively. We can see that
the representations generated from IDGCL present a more block-wise correlation pattern, indicating that the eight channels of the disentangled
graph encoder in IDGCL are able to capture mutually exclusive information and the latent features have indeed been disentangled.

Fig. 4. Visualization of the learned representations from two channels
(i.e., the 1st channel and 5th channel) in terms of the two latent factors
(i.e., factor p ¼ 0:2 and factor p ¼ 0:9). We can observe that different
channels of the disentangled graph encoder capture different latent fac-
tors of the graphs.

7864 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 8, AUGUST 2023

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on April 08,2024 at 06:02:54 UTC from IEEE Xplore.  Restrictions apply. 



domain knowledge, which work well when such knowl-
edge is available and benefits downstream tasks [43],
[48]. We also consider two representative self-supervised
baselines InfoGraph [5] and GraphCL [11].

For our proposed method and baselines, we first perform
pre-training and then conduct fine-tuning with 1%, 5%, 10%,
or 20% labeled training data. The number of message-passing
layers is set to 5 and the dimensionality of the representa-
tions is set to 300, following [47]. Others hyper-parameters
are kept consistent with those in the unsupervised learning
setting.

4.2.2 Results

The results are shown in Fig. 5. We can find that IDGCL out-
performs the baselines in most comparisons, which verifies
that learning disentangled graph representation with inde-
pendence promotion can benefit encoding useful informa-
tion of graphs into representations. For example, IDGCL
increases the AUC score by 7.8% against the strongest base-
line (i.e., AttrMasking) on OGBG-MOLBACE (10% label
rate). We also observe that IDGCL improves upon DGCL by
a margin of 3.5% on the same dataset. Besides, the improve-
ment of IDGCL compared with DGCL is 5.1%, 14.3%, and
2.8% on BACE, CLINTOX, and SIDER, respectively, when
the label rate is 5%. The results on OGBG-MOLMUV and
OGBG-MOLHIV illustrate that our method is also able to
handle large-scale graphs, demonstrating the benefit of
learning disentangled graph representations in the contras-
tive manner.

4.3 Analysis

4.3.1 Ablation Studies

We perform ablation studies over the key components of
our method to understand their functionalities more deeply.
We compare IDGCL with the following three variants: (1)
DGCL, i.e., setting � ¼ 0. (2) Variant 1: it sets puðkjGiÞ ¼
1=K, i.e., a uniform distribution of latent factors. (3) Variant
2: it sets K ¼ 1 directly, so that our method will degenerate
to the entangled graph contrastive learning model. For sim-
plicity, we only report the results on the datasets in the
unsupervised setting, while the results in the semi-super-
vised setting show similar patterns.

The results of IDGCL, DGCL and the variants are shown
in Table 4. We can find that when setting � to 0, the perfor-
mance is consistently degraded on all datasets, i.e., IDGCL
consistently outperforms DGCL. It means that although
DGCL considered disentanglement of different latent fac-
tors implicitly by conducting factor-wise contrastive learn-
ing, it neglects to explicitly encourage the independence of
the latent factors, which could lead to suboptimal perfor-
mance for disentanglement. In contrast, IDGCL, adopting
the HSIC to regularize the latent representations, can
enforce them to be independent to produce more informa-
tive representations than DGCL, which is validated by the
results in both unsupervised and semi-supervised settings.
Besides, from Table 4, we observe a drop in performance of
Variant 1, demonstrating the efficacy of inferring the latent
factors of the graphs. In variant 2, the latent factors are
entangled in the graph representation, making difficulties
for characterizing different aspects of the graphs and

Fig. 5. Graph classification results of our proposed method and baselines in the semi-supervised learning setting.

TABLE 3
The Statistics of the OGB Datasets in the Semi-Supervised Setting

BACE BBBP TOX21 CLINTOX SIDER TOXCAST MUV HIV

#Graphs 1,513 2,039 7,831 1,477 1,427 8,576 93,087 41,127
#Tasks 1 1 12 2 27 12 17 1
Avg #nodes 34.1 24.1 18.6 26.2 33.6 18.8 24.2 25.5
Avg #edges 36.9 26.0 19.3 27.9 35.4 19.3 26.3 27.5
Metric ROC-AUC ROC-AUC ROC-AUC ROC-AUC ROC-AUC ROC-AUC AP ROC-AUC

The datasets contain multiple binary classification tasks and #Tasks denotes the number of tasks (i.e., the dimensionality of output).
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conducting discrimination tasks in terms of each latent fac-
tor independently. The deterioration of performance verifies
the significance of the proposed factor-wise contrastive
learning.

4.3.2 Hyper-Parameter Sensitivity

We investigate the sensitivity of hyper-parameters of our
method: the number of channels K, the number of message-
passing layers L, the dimensionality of the representation d,
the batch size B, and the regularization coefficient �. Among
them, the number of channelsK is the most important hyper-
parameter. For simplicity, we only report the results on the
MUTAG (Fig. 6), IMDB-B (Fig. 7) datasets for the unsuper-
vised learning setting and the results on OGBG-MOLBACE
(20% label rate, Fig. 8) for the semi-supervised learning setting,
while the results on other datasets show similar patterns.
From Figs. 6, 7, and 8, we can observe the following results.
The performance increases at first with a larger K and drops
after reaching a peak, showing that a proper number of chan-
nels K which matches the real latent factors behind the
observed data can lead to better results. Then, the number of

message-passing layers L is also important because ourmodel
with a small L has a limited model capacity and may not be
able to fuse enough information from neighbors, and a very
large L could also lead to the over-smoothing problem [49]. In
addition, the optimal dimensionality of representation d for
MUTAG is relatively smaller than that for IMDB-B and
OGBG-MOLBACE, since MUTAG only consists of 188 graphs
but IMDB-B and OGBG-MOLBACE contain 1,000 and 1,513
graphs withmore nodes and edges, respectively. A too large d
may induce over-fitting and hurt the performance. Our
method benefits from larger batch sizes, which is consistent
with the literature on contrastive learning [25]. Finally, � also
influences the performance. A large � overemphasizes the
independence between latent factors and a too small � limits
the impact of the independence regularization.We empirically
find that setting � to 10�3 achieves satisfactory results for most
datasets.

5 RELATED WORK

Graph Neural Networks. Graph structured data is ubiquitous
in the real world [47], [50], [51]. Recently, graph neural

TABLE 4
Ablation Studies on Variants of Our Method

MUTAG PTC-MR PROTEINS NCI1 IMDB-B IMDB-M RDT-B RDT-M5K COLLAB

IDGCL 92.5 � 0.6 66.2 � 1.3 77.1 � 0.2 82.4 � 0.3 76.1 � 0.2 52.3 � 0.4 91.9 � 0.3 56.3 � 0.2 81.3 � 0.3
DGCL 92.1 � 0.8 65.8 � 1.5 76.4 � 0.5 81.9 � 0.2 75.9 � 0.7 51.9 � 0.4 91.8 � 0.2 56.1 � 0.2 81.2 � 0.3
Variant 1 89.3 � 0.3 64.3 � 1.3 74.9 � 0.2 78.5 � 0.5 73.4 � 0.5 50.3 � 0.2 91.1 � 0.7 55.9 � 0.3 77.5 � 0.4
Variant 2 86.5 � 0.6 63.5 � 1.6 73.9 � 0.6 77.7 � 0.6 70.9 � 0.5 49.8 � 0.3 89.7 � 0.6 55.7 � 0.2 71.5 � 0.2

We report the accuracy (%) with standard variation on the datasets. The performance of Variant 1 and 2 are greatly degraded compared with IDGCL, demon-
strating the significance to infer latent factors behind the graphs and conduct factor-wise contrastive learning.

Fig. 6. Impact of different hyper-parameters on the MUTAG dataset.

Fig. 7. Impact of different hyper-parameters on the IMDB-B dataset.

Fig. 8. Impact of different hyper-parameters on the OGBG-MOLBACE dataset.

7866 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 8, AUGUST 2023

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on April 08,2024 at 06:02:54 UTC from IEEE Xplore.  Restrictions apply. 



networks (GNNs) [2], [3], [4] have revolutionized the field
of graph representation learning [52]. GNNs show promis-
ing performance on various tasks, including node classifica-
tion [2], link prediction [53], and graph classification [4]),
and demonstrate profound successes in challenging appli-
cations, such as drug discovery [54], protein function pre-
diction [55], traffic forecasting [56], etc. GNNs generally
adopt a neighborhood aggregation (message passing) para-
digm, i.e., the representation of node is iteratively updated
by aggregating representations of its neighbors [3], [4]. The
representation of the whole graph is summarized on node
representation through the readout function, e.g., graph
pooling [4]. However, in order to achieve state-of-the-art
performance, most famous GNNs [57], [58], [59], [60], [61],
[62], are trained end-to-end with task-specific labels, which
could be extremely scarce for some graph datasets. Com-
pared with these supervised models, our proposed model is
based on self-supervised contrastive learning and can
largely reduce the over-dependence on the manual labels,
which is crucial for graph representation learning.

Contrastive Learning on Graphs. Recently, contrastive
learning, adopting the instance discrimination as the pretext
task, has become a dominant component in self-supervised
learning methods [22], [23], [25], [27], [30]. Some literatures
utilizing contrastive learning for graph data are pro-
posed [5], [7], [9], [10], [11], [63]. The key of these methods
is to maximize the agreement (i.e., similarity) between
proper transformations or different views of the input
graph. However, the existing graph contrastive learning
methods explore general settings where entanglement is
severe and do not incorporate disentangled representation
learning. They fail to recognize and disentangle the hetero-
geneous latent factors behind complex graph data. These
holistic methods have limited capacity in preserving
detailed graph properties, which easily results in subopti-
mal representations for downstream tasks.

Disentangled Representation Learning. Disentangled repre-
sentation learning is to learn factorized representations that
identify and disentangle the underlying explanatory factors
hidden in the observed data [14]. The existing efforts for dis-
entangled representation learning are mainly on computer
vision [64], [65]. Graph disentangled representation learn-
ing has raised a surge of interests recently [12], [19], [33],
[66], [67], [68]. This line of works attempts to learn disen-
tangled representations for graphs but heavily relies on the
annotated labels, which largely restricts their applications
to scenarios where labeled data are unavailable or expen-
sive to collect. On the other hand, some works [42], [69] are
based on the generative model, namely utilizing Variational
Autoencoders (VAEs) on graph for disentanglement, since
the hyper-parameter b of VAEs can balance the reconstruc-
tion and disentanglement [18], [70]. However, the recon-
struction in generative methods could be computationally
expensive [21], [71] and even introduce bias that has a nega-
tive effect on the learned representation [27]. In addition,
the reconstruction for graph-structured data often involves
discrete decisions that are not differentiable [69]. How to
learn disentangled representation on graph-structured data
with contrastive learning is largely unexplored.

Orthogonal Regularization. Several works find that impos-
ing orthogonal regularization on the weighting parameters

can improve neural network training for more efficient opti-
mization or better training stability [72], [73], [74]. More
recently, orthogonal regularization is also utilized to con-
strain the latent space for learning disentangled representa-
tion in computer vision [75], [76], [77]. For example,
PrOSe [75] proposes to parameterize the latent space repre-
sentation as a product of orthogonal spheres. OroJaR [76]
introduces orthogonal regularization in deep generative
models. However, the orthogonal regularizations can only
encourage linear independence while the HSIC regulariza-
tion can encourage complex nonlinear dependence among
the graph representations.

6 CONCLUSION

In this article, we propose the independence promoted dis-
entangled graph contrastive learning model (IDGCL) to
solve the problem of learning disentangled self-supervised
graph representation. We design a disentangled graph
encoder with a tailored multi-channel message-passing
layer, which is capable of aggregating features in a disen-
tangled manner. We further propose a factor-wise contras-
tive learning approach to solve the instance discrimination
task under each latent factor independently, so that the
learned representations of IDGCL are encouraged to not
only best describe the graphs but also be disentangled. We
also present an independence regularization to eliminate
the statistical dependence among different latent represen-
tations. Utilizing these techniques, each component of the
disentangled representations in IDGCL tends to characterize
a disentangled aspect of the graph that is pertinent to a
latent factor. Extensive experiments on both synthetic and
real-world datasets demonstrate the superiority of our
method against several state-of-the-art baselines in unsu-
pervised and semi-supervised graph classification tasks.
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