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Abstract

Graph neural architecture search (GraphNAS) has recently aroused considerable
attention in both academia and industry. However, two key challenges seriously
hinder the further research of GraphNAS. First, since there is no consensus for the
experimental setting, the empirical results in different research papers are often not
comparable and even not reproducible, leading to unfair comparisons. Secondly,
GraphNAS often needs extensive computations, which makes it highly inefficient
and inaccessible to researchers without access to large-scale computation. To
solve these challenges, we propose NAS-Bench-Graph, a tailored benchmark that
supports unified, reproducible, and efficient evaluations for GraphNAS. Specifically,
we construct a unified, expressive yet compact search space, covering 26,206 unique
graph neural network (GNN) architectures and propose a principled evaluation
protocol. To avoid unnecessary repetitive training, we have trained and evaluated
all of these architectures on nine representative graph datasets, recording detailed
metrics including train, validation, and test performance in each epoch, the latency,
the number of parameters, etc. Based on our proposed benchmark, the performance
of GNN architectures can be directly obtained by a look-up table without any further
computation, which enables fair, fully reproducible, and efficient comparisons. To
demonstrate its usage, we make in-depth analyses of our proposed NAS-Bench-
Graph, revealing several interesting findings for GraphNAS. We also showcase
how the benchmark can be easily compatible with GraphNAS open libraries such
as AutoGL and NNI. To the best of our knowledge, our work is the first benchmark
for graph neural architecture search.

1 Introduction

With the prevalence of graph data, graph machine learning [77], such as graph neural networks
(GNNs) [83, 67], has been widely adopted in diverse tasks, including recommendation systems [66],
bioinformatics [55], urban computing [24], physical simulations [54], combinatorial optimization [2],
etc. Graph neural architecture search (GraphNAS), aiming to automatically discover the optimal
GNN architecture for a given graph dataset and task, is at the front of graph machine learning research
and has drawn increasing attention in the past few years [78].

Despite the progress in GraphNAS research, there exist two key challenges that seriously hinder the
further development of GraphNAS:
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• The experimental settings, such as dataset splits, hyper-parameter settings, and evaluation proto-
cols differ greatly from paper to paper. As a result, the experimental results cannot be guaranteed
comparable and reproducible, making fair comparisons of different methods extremely difficult.

• GraphNAS often requires extensive computations and therefore is highly inefficient, especially for
large-scale graphs. Besides, the computational bottleneck makes GraphNAS research inaccessible
to those without abundant computing resources.

Similar challenges have arisen in other domains of NAS research [86], which gives birth to the
idea of tabular NAS Benchmarks [72, 12, 27, 75]. Tabular NAS benchmarks provide pre-computed
evaluations for all possible architectures in the search space by a table lookup. These benchmarks
dramatically boost NAS research, for example, by speeding up the experiments since no architecture
training is needed during the search procedure and creating fair comparisons of different NAS
algorithms [35]. Inspired by the success of tabular NAS benchmarks and to solve the challenges of
GraphNAS, we propose NAS-Bench-Graph2, the first tabular NAS benchmark that supports unified,
reproducible, and efficient evaluations for GraphNAS. Specifically, we first construct a unified
GraphNAS search space by formulating the macro space of message-passing as a constrained directed
acyclic graph and carefully choose operations from seven GNN candidates. Our proposed search space
is expressive yet compact, resulting in 26,206 unique architectures and covering many representative
GNNs. We further propose a principled protocol for dataset splits, choosing hyper-parameters, and
evaluations. We have trained and evaluated all of these architectures on nine representative graph
datasets with different sizes and application domains and recorded detailed metrics during the training
and testing process. All the code and evaluation results have been open-sourced. Therefore, our
proposed benchmark can enable fair, fully reproducible, and efficient comparisons for different
GraphNAS methods.

To explore our proposed NAS-Bench-Graph, we make in-depth analyses from four perspectives with
several interesting observations. First, the performance distribution shows that though reasonably
effective architectures are common, architectures with extremely good results are rare, and these
powerful architectures have diverse efficiencies, as measured by the model latency. Therefore,
how to find architectures with both high efficiency and effectiveness is challenging. Second, the
architecture distribution suggests that different graph datasets differ greatly in the macro space and
operation choices. The cross-datasets correlations further suggest that different graph datasets exhibit
complicated patterns and simply transferring the best-performing architectures from similar graph
datasets cannot lead to the optimal result. Lastly, detailed architecture explorations demonstrate that
architecture space exhibits certain degrees of smoothness, which supports the mutation process in
evolutionary search strategies, and deeper parts of architectures are more influential than lower parts,
which may inspire more advanced reinforcement learning based search strategies.

To demonstrate the usage of NAS-Bench-Graph, we have integrated it with two representative open
libraries: AutoGL [18], the first dedicated library for GraphNAS, and NNI3, a widely adopted library
for general NAS. Experiments demonstrate that NAS-Bench-Graph can be easily compatible with
different search strategies including random search, reinforcement learning based methods, and
evolutionary algorithms.

Our contributions are summarized as follows.

• We propose NAS-Bench-Graph, a tailored GraphNAS benchmark that enables fair, fully repro-
ducible, and efficient empirical comparisons for GraphNAS research. We are the first to study
benchmarking GraphNAS research to the best of our knowledge.

• We have trained and evaluated all GNN architectures in our tailored search space on nine
common graph datasets with a unified and principled evaluation protocol. Based on our proposed
benchmark, the performance of architectures can be directly obtained without repetitive training.

• We make in-depth analyses for our proposed benchmark and showcase how it can be easily
compatible with GraphNAS open libraries such as AutoGL and NNI.

2https://github.com/THUMNLab/NAS-Bench-Graph
3https://github.com/microsoft/nni
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2 Related Works

2.1 Graph Neural Architecture Search

GNNs have shown impressive performance for graph machine learning in the past few years [25,
1, 59, 69, 68, 30, 31, 32, 39, 37, 38]. However, the existing GNNs are manually designed, which
require expert knowledge, are labor-intensive, and unadaptable to changes in graph datasets and
tasks. Motivated by these problems, automated graph learning has drawn increasing attention in
the past few years, including hyper-parameter optimization on graphs [57, 61], and GraphNAS
[16, 84, 48, 18, 82, 23, 10, 73, 22, 62, 64, 5, 17]. GraphNAS aims to automatically discover the
optimal GNN architectures. Similar to general NAS [14], GraphNAS can be categorized based on the
search space, the search strategy, and the performance estimation strategy [78]. For the search space,
both micro [16, 80, 34] and macro [63, 15] spaces for the message-passing functions in GNNs are
studied, as well as other functions such as pooling [23, 65], heterogeneous graphs [10], and spatial-
temporal graphs [45]. Search strategies include reinforcement learning based methods [16, 84, 40],
evolutionary algorithms [44, 53, 18], and differentiable methods [82, 79, 81]. Performance estimation
strategies can be generally divided into training from scratch [16], hand-designed weight-sharing
mechanisms [84, 8], using supernets [48, 6, 18, 49], and prediction-based methods [56]. Despite
these progresses, how to properly evaluate and compare GraphNAS methods receives less attention.
Our proposed benchmark can support fair and efficient comparisons of different GraphNAS methods
as well as motivating new GraphNAS research.

2.2 NAS Benchmarks

Since the introduction of NAS-Bench-101 [72], many different benchmarks have been introduced
for NAS. However, most previous works focus on computer vision tasks such as NAS-Bench-
101 [72], NAS-Bench-201 [12], NATS-Bench [11], NAS-Bench-1shot1 [74], Surr-NAS-Bench [75],
HW-NAS-Bench [28], NAS-HPO-Bench-II [20], TransNAS-Bench-101 [13], NAS-Bench-Zero [7],
NAS-Bench-x11 [70], and NAS-Bench-360 [58]. Some recent benchmarks also study tabular data
(NAS-HPO-Bench [26]), natural language processing (NAS-Bench-NLP [27] and NAS-Bench-
x11 [70]), acoustics (NAS-Bench-ASR [41]), and sequence (NAS-Bench-360 [58]). We draw
inspiration from these benchmarks and propose the first tailored NAS benchmark for graphs. We
provide more comparisons with the existing NAS benchmarks in Appendix D.2.

3 Benchmark Design

In this section, we describe our design for the NAS benchmark construction, including the search
space (Section 3.1), the datasets used (Section 3.2), and the experiment settings (Section 3.3). We
provide some preliminaries of GNNs and GraphNAS in Appendix D.1.

3.1 Search Space Design

To balance the effectiveness and efficiency, we design a tractable yet expressive search space.
Specifically, we consider the macro search space of GNN architectures as a directed acyclic graph
(DAG) to formulate the computation4, i.e., each computing node indicates a representation of vertices
and each edge indicates an operation. Concretely, the DAG contains six nodes (including the input and
output node) and we constrain that each intermediate node has only one incoming edge. The resulted
DAG has 9 choices, as illustrated in Fig 1. Those intermediate nodes without successor nodes are
connected to the output node by concatenation. Besides this macro space, we also consider optional
fully-connected pre-process and post-process layers as GraphGym [73] and PasCa [76]. Notice that
to avoid exploding the search space, we consider the numbers of pre-process and post-process layers
as hyper-parameters, which will be discussed in Section 3.3. Finally, we adopt a task-specific fully
connected layer to obtain the model prediction.

For the candidate operations, we consider 7 most widely adopted GNN layers: GCN [25], GAT [59],
GraphSAGE [19], GIN [68], ChebNet [9], ARMA [4], and k-GNN [43]. Besides, we also consider
Identity to support residual connection and fully connected layer that does not use graph structures.

4To distinguish the computation graph and graph data, we refer to the computation graph using nodes and
edges, and the graph data using vertices and links.
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Figure 1: An illustration of the 9 different choices of our macro search space. Each node indicates a
representation of vertices and each edge indicates an operation. We omit the output node for clarity.

Table 1: The statistics of the adopted datasets.
Dataset #Vertices #Links #Features #Classes Metric

Cora 2,708 5,429 1,433 7 Accuracy
CiteSeer 3,327 4,732 3,703 6 Accuracy
PubMed 19,717 44,338 500 3 Accuracy
Coauthor-CS 18,333 81,894 6,805 15 Accuracy
Coauthor-Physics 34,493 247,962 8,415 5 Accuracy
Amazon-Photo 7,487 119,043 745 8 Accuracy
Amazon-Computers 13,381 245,778 767 10 Accuracy
ogbn-arxiv 169,343 1,166,243 128 40 Accuracy
ogbn-proteins 132,534 39,561,252 8 112 ROC-AUC

In summary, our designed search space contains 26,206 different architectures (after removing
isomorphic structures, i.e., architectures that appear differently but have the same functionality, see
Appendix A.5), which covers many representative GNN variants, including methods mentioned above
as well as more advanced architectures such as JK-Net [69], residual- and dense-like GNNs [29].

3.2 Datasets

We adopt nine publicly available datasets commonly used in GraphNAS: Cora, CiteSeer, and
PubMed [51], Coauthor-CS, Coauthor-Physics, Amazon-Photo, and Amazon-Computer [52], ogbn-
arXiv and ogbn-proteins [21]. The statistics and evaluation metrics of the datasets are summarized in
Table 1. These datasets cover different sizes from thousands of vertices and links to millions of links,
and various application domains including citation graphs, e-commerce graphs, and protein graphs.
More details about the datasets are provided in Appendix A.1.

The dataset splits are as follows. For Cora, CiteSeer, and PubMed, we use the public semi-supervised
setting by [71], i.e., 20 nodes per class for training and 500 nodes for validation. For two Amazon
and two Coauthor datasets, we follow [52] and randomly split the train/validation/test set in a semi-
supervised setting, i.e., 20 nodes per class for training, 30 nodes per class for validation, and the rest
for testing. For ogbn-arXiv and ogbn-proteins, we follow the official splits of the dataset.

For ogbn-proteins, we find through preliminary studies that using GIN and k-GNN operations
consistently makes the model parameters converge to explosion and therefore results in meaningless
results. Besides, GAT and ChebNet will result in out-of-memory errors for our largest GPUs with
32GB of memories. Therefore, to avoid wasting computational resources, we restrict the candidate
operations for ogbn-proteins to be GCN, ARMA, GraphSAGE, Identity and fully connected layer.
After such changes, there are 2,021 feasible architectures for ogbn-proteins.

3.3 Experimental Setting

Hyper-parameters To ensure fair and reproducible comparisons, we propose a unified evaluation
protocol. Specifically, we consider the following hyper-parameters with tailored ranges:
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• Number of pre-process layers: 0 or 1.

• Number of post-process layers: 0 or 1.

• Dimensionality of hidden units: 64, 128, or 256.

• Dropout rate: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8.

• Optimizer: SGD or Adam.

• Learning Rate (LR): 0.5, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005, 0.002, 0.001.

• Weight Decay: 0 or 0.0005.

• Number of training epochs: 200, 300, 400, 500.

For each dataset, we fix the hyper-parameters for all architectures to ensure a fair comparison. Notice
that jointly enumerating architectures and hyper-parameters will result in billions of architecture
hyper-parameter pairs and is infeasible in practice. Therefore, we first optimize the hyper-parameters
to a proper value which can accommodate different GNN architectures, and then focus on the GNN
architectures. Specifically, we adopt 30 GNN architectures from our search space as “anchors” and
adopt random search for hyper-parameter optimization [3]. The 30 anchor architectures are composed
of 20 randomly selected architectures from our search space and 10 classic GNN architectures
including GCN, GAT, GIN, GraphSAGE, and ARMA with 2 and 3 layers. We optimize the hyper-
parameters by maximizing the average performance of the anchor architectures. The detailed selected
hyper-parameters for each dataset are shown in the Appendix A.2.

Metrics During training each architecture, we record the following metric covering both model
effectiveness and efficiency: train/validation/test loss value and evaluation metric at each epoch, the
model latency, and the number of parameters. The hardware and software configurations are provided
in Appendix A.3. Besides, all experiments are repeated three times with different random seeds. The
total time cost of creating our benchmark is approximately 8,000 GPU hours (see Appendix A.4).

4 Analyses

In this section, we carry out empirical analyses to gain insights for our proposed benchmark. All the
following analyses are based on the average performances of three random seeds.

4.1 Performance Distribution

We first visualize the distribution of performances, including the accuracy, the latency, and the
numbers of parameters, of all architectures in Figure 2. We make several interesting observations.
For the effectiveness aspect, many architectures can obtain a reasonably good result, but architectures
with exceptionally strong results are still rare. On the other hand, the latency and the numbers of
parameters of architectures differ greatly. Since both model effectiveness and efficiency are critical
for GraphNAS, we mark the Pareto-optimal with respect to accuracy and latency in the figure. The
results show that, even for top-ranking architectures with similar accuracy, their latency varies greatly.
In addition, we observe that the number of parameters and the latency are positively correlated in
general (details are shown in the Appendix B.1).

4.2 Architecture Distribution

As introduced in Section 3.1, our proposed search space mainly consists of the macro space (i.e.,
the DAG) and candidate GNN operations. To gain insights of how different macro space and GNN
operation choices contribute to the model effectiveness, we select the top 5% architectures on each
dataset and plot the frequency of the macro search space and operation choices. The results are shown
in Figure 3. We make the following observations.

First, there exist significant differences in the macro space choices for different datasets, indicating
that different GNN architectures suit different graph data. For example, Cora, CiteSeer and PubMed
tend to select a 2-layer DAG, i.e., (E), (F), (G), and (H) (please refer to Figure 1 for the detailed
DAGs). PudMed and CS also prefer the 1-layer DAG (I), which is hardly selected in other datasets.
Physics, Photo, and Computers show more balanced distributions on the macro space. ogbn-arXiv
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(a) Cora (b) CiteSeer (c) PubMed

(d) Coauthor-CS (e) Coauthor-Physics (f) Amazon-Photo

(g) Amazon-Computers (h) ogbn-arXiv (i) ogbn-proteins

Figure 2: The distribution of accuracy, latency, and the numbers of parameters of all architectures.
The Pareto-optimal architectures w.r.t. accuracy and latency are marked with red crosses.
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Figure 3: The frequency of the macro space and operation choices in the top 5% architectures of
different datasets. Please refer to Figure 1 for the macro space choices.

and ogbn-proteins select deeper architectures more frequently, e.g., the 4-layer DAG (A) and the
3-layer DAG (B), (C), and (D).

As for the operation distribution, different datasets show more similar patterns. GCN and GAT are
selected most frequently in almost all datasets. Surprisingly, even though GIN and k-GNN are shown
to be theoretically more expressive in terms of the Weifeiler-Lehman test, they are only selected
in the relatively small datasets, i.e., Cora, CiteSeer, and PubMed. A plausible reason is that GIN
and k-GNN adopt the summation aggregation function in the GNN layers, which is not suitable for
node-level tasks in large-scale graphs. Moreover, different from NAS in computer vision where
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(c) The overlapping ratio of the top
5% architectures

Figure 4: The architecture performance correlation across different datasets using three metrics.

Identity operation plays an important role in improving model performance [60], Identity is hardly
chosen in any graph datasets. More analyses about the frequency of operations with different depths
can be found in the Appendix B.2.

4.3 Cross-datasets Correlations

To measure how architectures perform across different datasets, we calculate the performance
correlation of all architectures on dataset pairs as You et al. [73]. Specifically, we adopt three metrics:
Pearson correlation coefficient, Kendall rank correlation, and the overlapping ratio of the top 5%
architectures, i.e., if there are N architectures belonging to the top 5% of both two different datasets
in terms of accuracy, then the overlapping ratio is N/(26, 206×5%). We show the results in Figure 4.

We can observe that the correlation matrix has roughly block structures, indicating that there exist
groups of datasets in which architectures share more correlations. For example, Cora, CiteSeer and
PubMed generally show strong correlations. The correlations are also relatively high between Physics,
Photo, Computers, and ogbn-arXiv. Notice that even for these datasets, only the Pearson correlation
coefficient and Kendall rank correlation have large values, while the overlapping ratio of the top 5%
architectures is considerably lower (e.g., no larger than 0.3). Since we usually aim to discover best
architectures, the results indicate that best-performing architectures in different graph datasets exhibit
complicated patterns, and directly transferring the best architecture from a similar dataset as You et
al. [73] may not lead to the optimal result. More analyses about the transferability of the optimal
architectures on different datasets can be found in the Appendix B.3.

4.4 Detailed Explorations in Architectures

Since enumerating all possible architectures to find the best-performing one is infeasible in practice,
NAS search strategies inevitably need prior assumptions on the architectures. These explicit or
implicit assumptions largely determine the effectiveness of the NAS methods. Next, we explore the
architectures in details to verify some common assumptions.

Evolutionary Algorithm is one of the earliest adopted optimization methods for NAS [50]. In the
mutation process of evolutionary algorithms, i.e., randomly changing choices in the search space, a
common assumption is that similar architectures have relatively similar performance so that smoothly
mutating architectures is feasible [84]. To verify this assumption, we calculate the performance
difference between architectures with different number of mutations together with the average
performance difference between randomly chosen architectures as a reference line. The results are
shown in Figure 5. We can observe that the performance difference between mutated architectures is
considerably smaller than two random architecture, verifying the smoothness assumption in mutations.
Besides, we observe that the performance difference increases as the number of mutations in general
and changing operation choices usually leads to smaller differences than changing the macro space
choices. These observations may inspire further research of evolution algorithms for GraphNAS.

Reinforcement Learning (RL) is also widely adopted in NAS [87, 47, 85]. In RL-based NAS,
architectures are usually generated by a Markov Decision Process, i.e., deciding the architectures
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Figure 5: The performance difference between architectures with different number of mutations. The
red lines indicate the average performance difference between two random architectures.
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Figure 6: η2 for the architecture performance with different lengths of prefixes/suffixes as groups.
Larger η2 means that the groups can better explain the variance and the corresponding architectures
choices are more important for the performance.

using a sequential order [87]. Most GraphNAS methods simply assume a natural order, i.e., generating
architectures from lower parts to deeper parts [16]. To gain insights for such methods, we analyze the
importance of different positions of architectures. Specifically, we group architectures using their
prefixes (i.e., lower-parts choices) and their suffixes (i.e., deeper-parts choices), corresponding to
generating architectures using the natural order and the reserve order. Then, we adopt the following
metric from analysis of variance [46]:

η2 =
SSB

SST
=

∑K
k=1 nk(µk − µ)2∑N

i=1(xi − µ)2
,

where SSB and SST are the between-group variations and the total variation, N is the number
of architectures, xi is the accuracy of an architecture i, µ is the mean accuracy, K is the number
of groups, nk is the number of architectures in the group k, and µk is the mean performance of
architectures in the group k. In short, a larger η2 means the groups can better explain the variances in
the samples so that the factors for the group (i.e., architecture choices) are more important. The results
of varying the length of the prefixes and suffixed are shown in Figure 6. Somewhat surprisingly, in
most datasets, η2 in the reverse order is larger than that in the natural order, indicating that deeper
parts of the architecture are more influential for the performance than the lower parts. With the length
of prefixes and suffixes growing, η2 grows significantly. The results indicate that the natural order
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Table 2: The performance of NAS methods in AutoGL and NNI using NAS-Bench-Graph. The
best performance for each dataset is marked in bold. We also show the performance of the top 5%
architecture (i.e., 20-quantiles) as a reference line. The results are averaged over five experiments
with different random seeds and the standard errors are shown in the bottom right.

Library Method Cora CiteSeer PubMed CS Physics Photo Computers arXiv proteins

AutoGL GNAS 82.040.17 70.890.16 77.790.02 90.970.06 92.430.04 92.430.03 84.740.20 72.000.02 78.710.11
Auto-GNN 81.800.00 70.760.12 77.690.16 91.040.04 92.420.16 92.380.01 84.530.14 72.130.03 78.540.30

NNI
Random 82.090.08 70.490.08 77.910.07 90.930.07 92.350.05 92.440.02 84.780.14 72.040.05 78.320.14
EA 81.850.20 70.480.12 77.960.12 90.600.07 92.220.08 92.430.02 84.290.29 71.910.06 77.930.21
RL 82.270.21 70.660.12 77.960.09 90.980.01 92.48 0.03 92.420.06 84.900.19 72.130.05 78.520.18

The top 5% 80.63 69.07 76.60 90.01 91.67 91.57 82.77 71.69 78.37

to convert architectures into sequences may not be the optimal solution for GraphNAS and more
research could be explored in this direction.
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Figure 7: The average weight of different opera-
tions obtained using DARTS as the search algo-
rithm

Differentiable Method. DARTS [36] in one of
the most popular differentiable NAS algorithms.
We adopt DARTS on our proposed search space
as the search algorithm, and we plot the average
weight of different operations Figure 7. Com-
pared to the weights distribution of the top 5%
architectures shown in Figure 3(b), we can find
that in some datasets, DARTS dispatches the
largest weight to the most frequent operations
in best-performing architecture, e.g., GAT for
Cora and GCN for Amazon-Computers, indi-
cating the effectiveness of DARTS in searching
best-performing architectures.

5 Example Usages

In this section, we showcase the usage of NAS-Bench-Graph with existing open libraries including
AutoGL [18] and NNI [42] (detailed example codes are provided in the Appendix C). Specifically,
we run two NAS algorithms through AutoGL: GNAS [16] and Auto-GNN [84]. For NNI, we adopt
Random Search [33], Evolutionary Algorithm (EA), and Policy-based Reinforcement Learning (RL).
To ensure fair comparisons, we only let each algorithm access the performances of 2% of the all
architectures in the search space. We report the results in Table 2. We also show the performances of
the top 5% architecture, i.e, the 20-quantiles of each dataset in the table.

From the results, we can observe that all algorithms outperform the top 5% performance, indicating
that they can learn informative patterns in NAS-Bench-Graph. However, no algorithm can consistently
win on all datasets. Surprisingly, Random Search is still a strong baseline when compared with other
methods and even performs the best on two datasets, partially corroborating the findings in [33] for
general NAS. The results indicate that further research on GraphNAS is still urgently needed.

To investigate the learning of different GraphNAS methods, we plot the curves of the optimal
performance with respect to the number of architectures. The results are shown in Figure 8. We
can find that different algorithms behave differently. For example, EA and AGNN show a few
“jumps", i.e., the performance largely increases, while RL shows more smooth increasing patterns.
Taking closer looks at the learning curve may provide inspirations for developing new algorithms for
GraphNAS.

6 Conclusion and Future Work

In this paper, we propose NAS-Bench-Graph, the first tailored NAS benchmark for graph neural
networks. We have trained all 26,206 GNN architectures in our designed search space on nine
representative graph datasets with a unified evaluation protocol. NAS-Bench-Graph can support
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Figure 8: The learning curve of the optimal performance with respect to the number of searched
architectures. All results are averaged over five experiments with different random seeds. The
standard errors are shown in the background.

unified, reproducible, and efficient evaluations for GraphNAS. We also provide in-depth analyses for
NAS-Bench-Graph and show how it can be easily compatible with the existing GraphNAS libraries.

Since constructing tabular NAS benchmarks consumes extensive computational resources, our pro-
posed NAS-Bench-Graph has a relatively limited search space (i.e., 26,206 unique GNN architectures).
A possible direction is constructing surrogate benchmarks for GraphNAS to allow larger search spaces.
We also plan to extend our proposed benchmark to other graph tasks besides node classification, such
as link prediction and graph classification.
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