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 Background: message-passing framework of GNNs

 h𝑖
(𝑙)

: the representation of node 𝑣𝑖 in the 𝑙𝑡ℎ layer

 m𝑖
(𝑙)

: the message vector of node 𝑣𝑖 in the 𝑙𝑡ℎ layer

 Nodes exchange messages to update representations
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Message-passing GNNs

J. Gilmer, et al. Neural message passing for quantum chemistry. ICML, 2017.

Existing GNNs have shown successes in many graph applications



4

However, real graphs are challenging…

 Many real graphs exist in dynamic and open environments

 Open: “emerging new classes, decremental/incremental features, changing 

data distributions, varied learning objectives, etc.” (Zhi-hua Zhou)

 I.e., distribution shifts naturally exist in graph data

Out-of-distribution generalized GNNs are critically needed!



 Why existing GNNs fail to achieve OOD generalization?

 Our answer: spurious correlations

 GNNs tend to exploit statistical correlations in the training set 

 But spurious correlations cannot generalize under distribution shifts

Main Challenge for Handling Distribution Shifts
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Picture credit: Duvenaud et al., NeurIPS 2015; Ying-Xin Wu, et al., ICLR 2022
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Handling Distribution Shifts

Picture credit: Kipf and Welling (GCN, ICLR 2017), Jure Leskovec (CS224w, Stanford Univ.)

How to handle distribution 

shifts in the vector space?

How to handle distribution shifts 

in the topology space?

How to handle distribution shifts in 

GNN architectures?



 How to get rid of spurious correlations in node representations?

 Main idea: decorrelations

 Remove the statistical dependence of truly predictive (causal) information 

and spurious (non-causal) information by sampling reweighting, i.e., assign 

each sample (graph) a weight)

 More theoretical backgrounds: direct confounder balancing  

Out-of-Distribution Generalized GNN (OOD-GNN)

C S

Y G

Structural Causal Model

OOD-GNN: Out-of-Distribution Generalized Graph Neural Network. TKDE, 2022.
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 In practice: encourage to eliminate statistical dependence of all dimensions

 Since we do not know which ones are causal and spurious 

 To get rid of spurious correlations, we expect

 We adopt Hilbert-Schmidt Independence Criterion (HSIC) measured as:

 However, calculating HSIC is intractable. We adopt a practical version as:

where 𝑓 ⋅ and 𝑔 ⋅ are the random Fourier features function:

OOD-GNN: HSIC

OOD-GNN: Out-of-Distribution Generalized Graph Neural Network. TKDE, 2022.
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min



OOD-GNN: Optimization

OOD-GNN: Out-of-Distribution Generalized Graph Neural Network. TKDE, 2022.

 Optimization objectives: jointly optimize weights
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OOD-GNN: Experiments
 Setup: 14 graph datasets, various kinds of domains/shifts

 Results:

OOD-GNN: Out-of-Distribution Generalized Graph Neural Network. TKDE, 2022.
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 Setup: 14 graph datasets, various kinds of domains/shifts

 Results:

OOD-GNN: Experiments

OOD-GNN: Out-of-Distribution Generalized Graph Neural Network. TKDE, 2022.
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 Except the reweighting, OOD-GNN performs like a normal GNN

 The formation of a graph is typically driven by many entangled latent factors

→ Can we disentangle latent factors in the message passing?

 The graph labels can be extremely scarce for many graph datasets/scenarios

→ Can we design self-supervised learning frameworks?

Independence-promoted Disentangled Graph 
Contrastive Learning (IDGCL)

Disentangled Graph Contrastive Learning with Independence Promotion. TKDE, 2022.
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 Key idea: disentangled graph encoder + factor-wise contrastive learning + HSIC

 Each channel for one disentangled factor

IDGCL: Method

Disentangled Graph Contrastive Learning with Independence Promotion. TKDE, 2022.
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IDGCL: Method

Disentangled Graph Contrastive Learning with Independence Promotion. TKDE, 2022.
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 Graph Augmentation

 Four types of strategies: node dropping, edge perturbation, attribute masking, subgraph sampling

 Reflect diverse aspects behind graphs, can be directly extended

 Self-supervised loss: 



IDGCL: Method

Disentangled Graph Contrastive Learning with Independence Promotion. TKDE, 2022.
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 Factor-wise message-passing

 First, a shared GNN for a few layers 

 Then learn 𝐾 GNNs with independent parameters

 Each channel only captures one hidden factor



IDGCL: Method

Disentangled Graph Contrastive Learning with Independence Promotion. TKDE, 2022.
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 Factor-wise contrastive learning

 Consider multiple latent factors

 Infer latent factors by 𝐾 prototypes:

 Subtask under each latent factor:

 Statistical Independence regularizer:

 Overall objective function:  



 Optimization

 Maximize the joint probability

 Step 1: infer the posterior probability of latent factors with Bayes’ theorem:

 Step 2: approximate the posterior probability with a variational distribution:

 Step 3: optimize the evidence lower bound (ELBO) of the log-likelihood

 Step 4: calculate the independence regularizer

 Step 5: update parameters using gradient descends 

Disentangled Graph Contrastive Learning with Independence Promotion. TKDE, 2022.
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IDGCL: Optimization



 Classification performance in benchmarks

Disentangled Graph Contrastive Learning with Independence Promotion. TKDE, 2022.
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IDGCL: Experiments



 OOD graph datasets

Disentangled Graph Contrastive Learning with Independence Promotion. TKDE, 2022.
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IDGCL: Experiments



IDGCL

MVGRL GraphCL

Each channel captures one latent factor

Disentangled Graph Contrastive Learning with Independence Promotion. TKDE, 2022.
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 Visualizations for representations 

IDGCL: Experiments
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Handling Distribution Shifts

Picture credit: Kipf and Welling (GCN, ICLR 2017), Jure Leskovec (CS224w, Stanford Univ.)

How to handle distribution 

shifts in the vector space?

How to handle distribution shifts 

in the topology space?

How to handle distribution shifts in 

GNN architectures?



Graph Neural Architecture Search (NAS)

 Goal: automatically learn the best neural architecture

 Key designs
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FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search, CVPR 2019

Neural Architecture Search A Survey, JMLR 2019
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GRACES: Graph Neural Architecture Search under 
Distribution Shifts

Graph Neural Architecture Search under Distribution Shifts. ICML, 2022.

Customize a unique GNN architecture for each graph 

instance to handle distribution shifts 



 Goal: learn a vector representation for each graph to reflect its characteristics 

 Challenge: preserve diverse properties of the original graph

 Method: self-supervised disentangled graph encoder

 Encoder: disentangled GNN

 Supervised loss: the downstream task

 Self-supervised loss: node degree as regularization
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GRACES: Graph Encoder



 Goal: customize an architecture based on the graph representation

 Assumption: graphs with similar characteristics need similar architectures

 Method: prototype based architecture customization

 Probabilities of choosing operations:

 Regularizer to avoid mode collapse:
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GRACES: Architecture Customization 
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GRACES: Learning Architecture Parameters

 Goal: learn parameters for the customized architectures

 Method: customized super-network 

 Loss functions: 



29

GRACES: Experiments

Synthetic OOD graph datasets Real-world OOD graph datasets

Customization of architectures
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Handling Distribution Shifts

Picture credit: Kipf and Welling (GCN, ICLR 2017), Jure Leskovec (CS224w, Stanford Univ.)

How to handle distribution 

shifts in the vector space?

How to handle distribution shifts 

in the topology space?

How to handle distribution shifts in 

GNN architectures?



 How to get rid of spurious correlations in the topology space?

 Main idea: distinguish invariant and variant subgraphs

 Invariant: relationships with labels are stable under distribution shifts

 Variant: the complement of invariant, e.g., environments

 Challenge: 

 There is no labels for invariant and variant subgraphs

 Variant and invariant subgraphs are highly entangled

Graph Invariant Learning (GIL)

Learning Invariant Graph Representations under Distribution Shifts. NeurIPS, 2022.

Invariance

OOD Generalization

Variance

Environment/Domain

Information
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 Key Idea: mutual promotion of invariant learning and environment (variant) inference

 Invariant subgraphs: for predicting labels

 Variant subgraphs: for providing environments

Learning Invariant Graph Representations under Distribution Shifts. NeurIPS, 2022.

GIL: Method
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GIL: Method

 Goal: learn a mask to separate invariant and variant subgraphs

 Challenge: need to handle graphs of various sizes and be inductive

 Proposed method: GNN with top-t pooling
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GIL: Method

 Assumption: the variant subgraphs capture environment-discriminative features

 Challenge: there is no ground-truth environment labels

 Proposed method: cluster variant subgraphs infer environments, e.g., k-means
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GIL: Method

 Goal: find an invariant subgraph generator

 Optimization: 

 Invariance regularizer: 
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 We prove that the maximal invariant subgraph generator can achieve OOD optimal 

 Several assumptions:

 We prove that GIL maintains permutation invariance.

 We show that the time complexity of GIL is on par with the existing GNNs  

 Time Complexity: 𝑂( 𝐸 𝑑 + |𝑉|𝑑2), 𝐸 and 𝑉 are the edge and node number.

Learning Invariant Graph Representations under Distribution Shifts. NeurIPS, 2022.

GIL: Theory
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 OOD Generalization on synthetic datasets (Spurious-Motif)

 Each graph includes one invariant motif (i.e., label) and variant motif (i.e., spurious part).

 𝑟 controls the bias strength; |𝑟𝑡𝑒𝑠𝑡 − 𝑟𝑡𝑟𝑎𝑖𝑛| is the distribution shift strength.

Unbiased Test Set

Biased Test Set

Best OOD generalization

Learning Invariant Graph Representations under Distribution Shifts. NeurIPS, 2022.

GIL: Experiments
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 OOD Generalization on real-world datasets

 ogbg-molhiv

Learning Invariant Graph Representations under Distribution Shifts. NeurIPS, 2022.

GIL: Experiments

Compatible with various backbone GNNs 

and a new SOTA on OGB leaderboard!
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 Showcase on Spurious-Motif datasets

 Showcases on Graph-SST2 (human-understandable)

Capture the subgraphs with
positive/negative semantics

Learning Invariant Graph Representations under Distribution Shifts. NeurIPS, 2022.

GIL: Experiments
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 Many graphs are dynamic in nature

 Distribution shifts can be spatio-temporal

Disentangled Intervention based Dynamic Graph 
Attention Network (DIDA)

Picture credit: ROLAND: graph learning framework for dynamic graphs, KDD 2022

Dynamic Graph Neural Networks Under Spatio-Temporal Distribution Shift. NeurIPS, 2022.
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 Key Idea: finding invariant/variant spatial-temporal patterns and apply intervention

 Intervention: from causal theory to get rid of spurious correlation

DIDA: Method

Dynamic Graph Neural Networks Under Spatio-Temporal Distribution Shift. NeurIPS, 2022.

Judea Pearl
2011 Turing Award

Picture credit: Discovering Invariant Rationales for Graph Neural Networks, ICLR 2022
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DIDA: Method

DIDA: Method

Dynamic Graph Neural Networks Under Spatio-Temporal Distribution Shift. NeurIPS, 2022.

 Goal: separate invariant and variant spatial-temporal subgraphs

 Proposed method: disentangled dynamic graph attention network

 First calculate masks

 Then calculate message-passing

 Updating node representation
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DIDA: Method

DIDA: Method

Dynamic Graph Neural Networks Under Spatio-Temporal Distribution Shift. NeurIPS, 2022.

 Goal: create intervened distributions by sampling and reassembling variant patterns
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DIDA: Method

DIDA: Method

Dynamic Graph Neural Networks Under Spatio-Temporal Distribution Shift. NeurIPS, 2022.

 Goal: focus on invariant patterns using intervened distributions

 Original objective:

 Practical version: intervention-invariant regularization 
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 Synthetic datasets

 Real-world datasets

DIDA: Experiments

Dynamic Graph Neural Networks Under Spatio-Temporal Distribution Shift. NeurIPS, 2022.
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 Showcases:

 Ablation studies:

DIDA: Experiments

Dynamic Graph Neural Networks Under Spatio-Temporal Distribution Shift. NeurIPS, 2022.
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Distribution Generalized 
Graph Neural Network

Disentangled Graph 
Contrastive Learning 
with Independence 

Promotion

Self-supervised

TKDE’22

TKDE’22
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Graph Neural 
Architecture Search 

under Distribution Shifts
ICML’22

Customize unique 
GNN architectures 

for graphs



49

Out-Of-Distribution Generalization on Graphs: A Survey. arXiv:2202.07987.

Survey

Paper collection: https://github.com/THUMNLab/awesome-graph-ood

https://github.com/THUMNLab/awesome-graph-ood


50

Acknowledgements

Wenwu Zhu                        Peng Cui

Tsinghua Univ.                      Tsinghua Univ.                       

Haoyang Li            Yijian Qin             Xin Wang         Zeyang Zhang       Pengtao Xie

Tsinghua Univ.     Tsinghua Univ.     Tsinghua Univ.     Tsinghua Univ.            UCSD

,.



THANK YOU!

51

https://zw-zhang.github.io

zwzhang@tsinghua.edu.cn


