Automated Machine Learning on
Graphs

Ziwel Zhang
Tsinghua University

2022.11.19@LOGS

Graphs are Ubiquitous

Social Network Biology Network

Traffic Network Information Network

Graph Applications

Natural Language Processing Computer Vision Data Mining

Multimedia Information Retrieval

Graph Neural Network

1 Design neural networks directly applicable for graphs for end-to-end learning

[l Message-passing framework: nodes exchange messages along structures

The Existing Problems in Traditional
Graph Learning Methods

Manually design architectures and hyper-parameters through trial-and-error
Each dataset/task is handled separately

kip-connect

s
c{k2} _EEIE—add—softplus Cos-add-linear :n
o GCN-add-;c;t:q_)Efs::fgl, 0 —— :-

GCN-add-relu6
LYY e
c_{k-2} . GCN-add-linear 0

—

skip-connect g =k
c {k-1} —

xSymGA_T—meal@

GCN—add—EeE B

3 R -1 ——— ——
/\@ - p __ Const-add-tanh skip—comlecfrr
@ : [B‘ %ﬁ | i EI T _3| 0 ll_——————--“""" :- c_{k}
ek 1} _S)mlGAT—ml_pfg]{l_____,. -
|\ , 7

The adaptivity of graph machine learning is limited!

R ——
A Glance of AutoML

‘::- \ Dataset —
TR R

L !{3}
Optimization
Metric I L
——
Automated Machine Learning
Machine Learning Model

i Constraints
(Time/cost)

Design ML methods — Design AutoML methods

ML vs. AutoML

O Rely on expert knowledge O Free human out of the loop
O Tedious trail-and-error O High optimization effectiveness
O Limited by human design 0 Discover & extract patterns and

combinations automatically

Graph Neural Architecture Search (NAS)

0 NAS: automatically learn the best neural architecture

)

Search space

e

o
'."

>

-
0 Key designs

Manual Design

4
I
I

.

Latency
®
o ®

: :
Accuracy

" Performance

Neura

| Architectures

o

Training &
Evaluation

e
Target

dataset

T
Graph NAS: Search Space

Data NN architecture Search Space

G=(V,E)

Graph NAS Search Space

0 AGG(-): how to aggregate information from neighbors

0 Requirement: permutation-invariant
0 Common choices: mean, max, sum, etc.

O a;;: the importance of neighbors

0 COMBINE(-): how to update representation
0 Common choices: CONCAT, SUM, MLP, etc.

O o(+): Sigmoid, RelLU, tanh, etc.

D

0 Dimensionality of h;, the number of attention heads (when using attention)

Graph NAS Search Strategy

0 Most previous general NAS search strategies can be directly applied

0 Reinforcement learning Sample architecture with probability

1 Controller:

Train the architecture

Controller to get its accuracy

| EVOIutionary Compute gradient and update the controller

1 Define how to evolve and how to select

1 Differentiable

[0 Super-net: mix all possible operations

Survey

Automated Machine Learning on Graphs: A Survey

Ziwei Zhang* , Xin Wang* and Wenwu Zhu'
Tsinghua University, Beijing, China
zw-zhang 16@mails.tsinghua.edu.cn, {xin_wang,wwzhu} @tsinghua.edu.cn

Paper collection: https://github.com/THUMNLab/awesome-auto-graph-learning
Tutorial KDD 2021: https://zw-zhang.qgithub.io/files/2021 KDD AutoMLonGraph.pdf

Automated Machine Learning on Graphs: A Survey. IJCAI, 2021.

https://github.com/THUMNLab/awesome-auto-graph-learning
https://zw-zhang.github.io/files/2021_KDD_AutoMLonGraph.pdf

Challenges for the Existing Methods

The existing methods partially solve the applicability problem

...but GraphNAS has many unique and unsolved challenges

Graph Structure

I — Scalability

Generalization

—

Challenges: Graph Structure

Graph structure is the key to GraphNAS
Previous works assume fixed structures G=(V.E)
— Is the input graph structure optimal?

— How to select architectures and graph

structures that suit each other? D Links
 sipcomeet
c{k2} _aai;id_—softplus C_os_—;l;i—_ﬁﬁe_afﬁ 1
e i B ”
Teny] GN-addsoftplus —H O [A

Challenge: how to theoretically model graph structure in GraphNAS

Analysis

Different operations fit graphs with different amount of information

Factors to determine the amount of information: signal to noise ratio

Less noise Large noise
Synthetic datasets:

How to reduce structural noises while searching architectures?

GASSO: Jointly Learn Graph Structure and Neural
Architecture

Learn graph structure and neural architecture through

a joint optimization scheme

Graph Differentiable Architecture Search with Structure Learning. NeurlPS, 2021.

GASSO: Model

O Formulation: tri-level optimization

0 Feature Smoothness Constraint

0 Mask original edges: G =G, O M

0 Possible extensions: adding edges
0 Challenge: time complexity, there are 0(n?) possible edges

GASSO: Experiments

[0 Experiments on graph benchmarks

Dataset Cora Citeseer Pubmed
GCN' 87.40 79.20 88.40
GAT! 87.26 +0.08 77.82+0.11 86.83 +0.11
ARMAT 86.06 £ 0.05 76.50+0.00 88.70 +0.24
DropEdge’ 87.60 £0.05 7857+0.00 87.34+0.24
DARTS 86.18 +0.36 74.96 +0.10 88.38 +0.18
GDAS 85.484+0.30 7420+ 0.11 89.50+0.14
ASAP 85.214+0.13 75.14+0.09 88.65 + 0.10
XNAS 86.80 £0.14 76.334+0.09 88.61 +0.25
GraphNAS* 86.83 +0.56 79.05+0.28 89.99 4+ (.43
| GAssO 87.63+0.29 79.61+0.32 9052+024 |

[0 Experiments on larger graph datasets

Dataset Physics CoraFull ogbn-arxiv
GCN 95.94 68.08 70.39
GAT 95.86 65.78 68.53
DARTS 95.74 68.51 69.52
GASSO 96.38 68.89 70.52

Challenge: Large-scale Graphs

Social Networks

WeChat: 1.29 billion monthly active users (Aug 2022)
Facebook: 2.8 billion active users (2020)

E-commerce Networks

Millions of sellers, about 0.9 billion buyers, 10.6
trillion turnovers in China (2019)

Citation Networks

131 million authors, 185 million publications, 754
million citations (Aminer, Aug 2022)

Challenge: how to efficiently scale to billion-scale graphs

SuperNet Training

0 Supernet: combine all possible operations of the search space

0 Trained by sampling architectures and back-propagations
0 Supernet training for large-scale graphs:
0 Using the whole graph — computational bottleneck
0 Straight-forwardly sampling subgraphs — consistency issue

GAUSS: Large-scale Graph Neural Architecture Search

Jointly sample subgraphs and architectures to find the

most suitable architecture

Large-scale Graph Neural Architecture Search. ICML, 2022.

GAUSS: Architecture Importance Sampling

é)

[0 Goal: stabilize the training of the supernet 2cc(A) = Escarccaia(a)
p(a)

0 Method: important sampling of architectures = Banrca) yRcCuial@),
0 I'(A): proposal distribution
[0 Learning proposal distribution: reinforcement learning with GRU controller
hg =0, z¢9 = <bos> Reward function: performance + regularizer

h;, = GRU(Emb(x;—1),h;—1) e {l,...,L} o . ,
g(21|0u_1) = Softmax(Why) le{l,.., L) 0 = argmax,(R(0) + SH(I'(9))),

x; = Sample(q(xi|ros-1)) L€ {l,...,L}

GAUSS: Architecture Peer Learning on Graph

a4 N

. J

0 Goal: smooth the optimization objective
0 Assumption: “senior students” can teach “junior students”

0 Method: assign weights to different samples, gradually progress from easier
parts to difficult parts

{ t
) +

O = Qppin X (1

- ;)
Ttotal Ttotai

GAUSS: Experiments

DATASET #NODES #EDGES

CS 18,333 81.894

PHYSICS 34,493 247,962

ARXIV 169,343 1,166,243

PRODUCTS |2.449.029 61.859.140 >x1000
PAPERS100M | 111,059,956 1.615.685.872

Table 2. The results of our proposed method and baseline methods. We report both the validation and test accuracy [%] over 10 runs with
different seeds. OOT means out-of-time (cannot converge within 1 single GPU day), while OOM means out-of-memory (cannot run on a
Tesla V100 GPU with 32GB memory). The results of the best hand-crafted and automated method are in bold, respectively.

Methods CS Physics Arxiv Products Papers100M
valid test valid test valid test valid test valid test
GCN 04.100 21 93.98p.21 96.290.05 96.38¢ 07 72.760.15 71.700.18 91.750.04 80.19¢ 46 70.325.11 67.06¢. 17
GAT 93.74¢g 27 93.480.36 96.250.23 96.379.23 73.199.12 71.850.21 90.750.16 80.59¢.40 70.26¢0.16 67.260.06
SAGE 95.650.07 95.330.11 96.76¢g 19 96.720 07 73.11508 71.780.15 91.750 04 80.19¢g 46 70.324 11 67.06¢ 17
GIN 02.000.43 92.140.34 96.03g.11 96.04¢g 15 71.16010 70.01g.33 91.58¢p.10 79.07¢.52 68.98; 16 65.780.09
GraphNAS 94.90¢ 14 94.67¢g.23 96.76¢g.10 96.72¢0. 07 72.76¢9.15 71.709.18 OOT O0T 00T 0[0])
SGAS 95.620.06 95.440.06 96.440.10 96.50¢.11 72.38p.11 71.34p05 OOM OOM OOM OOM
DARTS 95.62¢p 06 95.440.06 9621016 96.40¢ 21, 73.43p07 72.10525 OOM OOM OOM OOM
EGAN 05.600 10 95.43p.05 96.39g.18 96.450.19 72.91y25 71.759.355 OOM OOM OOM OOM
Basic 95.13()_()7 95.45{).[)5 96.25[]'[]6 9().53[]_()9 73.28()_()8 72.0()()_33 91.79()_11 8().56{)_39 69.49{)_37 66.24[]'46

Challenge: Distribution Shifts

O Distribution shifts naturally exist in graph data

skip-connec
o2} |- CCN add-s ftpl " Cos ddl ear
_ [ty

O Searching a fixed architecture on the training data may fail to generalize

Challenge: how to make GraphNAS capable of

out-of-distribution generalization

GRACES: Graph Neural Architecture Search under
Distribution Shifts

Customize a unigue GNN architecture for each graph

Instance to handle distribution shifts

Graph Neural Architecture Search under Distribution Shifts. ICML, 2022.

GRACES: Graph Encoder

———————————————————————— ~

g S
F 1
1 1
i 1
i 1
i 1
i 1
i 1
i 1
i 1
i 1
i 1
i 1
i 1
I 1
i 1
i 1
I 1
i 1
i 1
I 1
I 1
i 1
I 1
I 1
i 1
I 1
‘)
“ /

[0 Goal: learn a vector representation for each graph to reflect its characteristics
0 Challenge: preserve diverse properties of the original graph
0 Method: self-supervised disentangled graph encoder

Nir
0 Encoder: disentangled GNN HO = ‘ﬁ GNNH{ ™V A) Loy => L(C(hi),y,)
. k=1 =
0 Supervised loss: the downstream task N K1

~ 58l ssl

O Self-supervised loss: node degree as regularization £sst = Z Z Cost (975 Vi %)
i=1 k=1

GRACES: Archltecture Customlzatlon

—————————————————

,————————___________________~
~———————————————————————————/

—————————————————

0 Goal: customize an architecture based on the graph representation
O Assumption: graphs with similar characteristics need similar architectures
0 Method: prototype based architecture customization

0 Probabilities of choosing operations:

0 Regularizer to avoid mode collapse:

GRACES: Learning Architecture Parameters

—————————————————

,———————————————————————————~
u——————————————————————————_f

[0 Goal: learn parameters for the customized architectures
0 Method: customized super-network

1 Loss functions:
L= f}/ﬁ’main + (1 — f}/)‘cfreg

‘C"reg — ‘Csup + Bl‘cssl + BQ‘CCOS

GRACES: Experiments

Synthetic OOD graph datasets Real-world OOD graph datasets

Customization of architectures

Introduction — AutoGL

0 We design an autoML framework & toolkit for machine learning on graphs.

AutoGL

Open source Easy to use Flexible to be extended

https://mn.cs.tsinghua.edu.cn/AutoGL
https://github.com/THUMNLab/AutoGL

Overall Framework

Graph Heterogenous Node

Node Classification Link Prediction Graph Classification . .
Task Classification
(- T \
| AutoGL Solver |
)
J mew | Hyper- |
> I\) I Parameter I
E / ﬂ\ } Neural Optimization
| -
< |:> AutoGL |:> | %uto.Feafure I:> Architecture I::> |:> E Aut(;)l I
Dataset I ngineering Search nsemble I
| Model |
| Training |
Graph | |
Data _ _)
=
S
= PyTorch Geometric Deep Graph Library
2
5]
.O
z GPU CPU
=]

Modular Design

(AutoGL
o I
= S |l Hyper- SO ver
\ / '; Parameter
i \a/ Auto Neural Optimization
¥ > AutoGL > Feature C> | Architecture | T C> En’z\:r':loble
Dataset Engineering Search
Model
Training
Graph
Data \ -
Key modules:

AutoGL Dataset: manage graph datasets
AutoGL Solver: a high-level API to control the overall pipeline

Five functional modules:
Auto Feature Engineering
Neural Architecture Search
Hyper-parameter Optimization
Model Training
Auto Ensemble

AutoGL Roadmap

1 N\
4 v0.1 v0.3 v0.5 (scheduled) \
O Initial release O DGL backend, PyG 2.0

O Overall pipeline O Heterogenous graphs
O Dataset, feature engineering,

. O Decoupled modeling
model training, auto ensemble
O Hyper-parameter optimization @ NAS enhancements
\

E | 20217 |—77 NP —)y 77—)3 06 B
/ /

v0.2 v0.4 (scheduled)
O Neural Architecture Search

O Graph sampling
O Model enhancement
O Unit tests

- /

Team member (~15)

Architect: Chaoyu Guan (v0.1-v0.3), Yijian Qin (v0.4-v0.5)

Programmer: Haoyang Li, Zeyang Zhang, Heng Chang, Zixin Sun, Beini Xie,
Jie Cai, Zizhao Zhang, Jiyan Jiang, Yao Yang, Fang Shen
Tester: Yipeng Zhang, Peiwen Li

Media Coverage

The Evaluation of Graph NAS Methods

How to properly evaluate different GraphNAS algorithms
Incomparable and irreproducible results

EH s b

Computationally expensive

Diverse evaluation protocols

NAS-Bench-Graph

O The first tabular NAS benchmark for GraphNAS
O Unified, Reproducible, Efficient
O Provide detailed metrics of all architectures (exhaust 8,000 GPU hours)

NAS-Bench-Graph: Benchmarking Graph Neural Architecture Search. NeurIPS, 2022.

NAS-Bench-Graph: Designs

O Search space:
O Macro space:

26,206 architectures
cover representative GNNs

O Operations: GCN, GAT, GraphSAGE, GIN, ARMA, k-GNN, MLP
O Datasets:

9 datasets
different sizes/domains

NAS-Bench-Graph: Benchmarking Graph Neural Architecture Search. NeurIPS, 2022.

NAS-Bench-Graph: Usage

O Integrated with two representative libraries: AutoGL and NNI

O Example: ~10 lines of codes

O Open source: https://github.com/THUMNLab/NAS-Bench-Graph
NAS-Bench-Graph: Benchmarking Graph Neural Architecture Search. NeurIPS, 2022.

https://github.com/THUMNLab/NAS-Bench-Graph

NAS-Bench-Graph: Analysis

Performance distribution Architecture distribution & Correlation

Architecture space smoothness Influence of operations at different depth

NAS-Bench-Graph: Benchmarking Graph Neural Architecture Search. NeurIPS, 2022.

Recap: Our Recent Works on GraphNAS

Graph Structure

I Scalability

Generalization

[NAS-Bench-Graph]

[AutoGL: a library for automated graph machine learning]

Acknowledgements

Wenwu Zhu
Tsinghua Univ.

Chaoyu Guan Yijian Qin Xin Wang Zeyang Zhang Pengtao Xie
Tsinghua Univ. Tsinghua Univ. Tsinghua Univ. Tsinghua Univ. UCSD

THANK YOU!

