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Graphs are Ubiquitous

Social Network Biology Network

Traffic Network Information Network

Images are credit to web search engines
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Images cited from: Marcheggiani and Titov, EMNLP 2017;  Zellers et al., CVPR 2018, Hudson and Manning, NeurIPS 2019.

Natural Language Processing Computer Vision

Multimedia

Graph Applications

Data Mining

Information Retrieval
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Graph Neural Network

Image cited from Kipf and Welling, ICLR 2017

 Design neural networks directly applicable for graphs for end-to-end learning 

 Message-passing framework: nodes exchange messages along structures
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The Existing Problems in Traditional 
Graph Learning Methods 

 Manually design architectures and hyper-parameters through trial-and-error

 Each dataset/task is handled separately

One-shot Graph Neural Architecture Search with Dynamic Search Space, AAAI 2021
The adaptivity of graph machine learning is limited!
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A Glance of AutoML

Picture credit to Microsoft Azure Machine Learning AutoML

Design ML methods → Design AutoML methods



ML vs. AutoML

 Rely on expert knowledge

 Tedious trail-and-error

 Limited by human design

 Free human out of the loop

 High optimization effectiveness

 Discover & extract patterns and 

combinations automatically
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Graph Neural Architecture Search (NAS)

 NAS: automatically learn the best neural architecture

 Key designs
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FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search, CVPR 2019

Neural Architecture Search A Survey, JMLR 2019



Graph NAS: Search Space
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G = ( V, E )

Data NN architecture Search Space

?

NAS-Bench-201 Extending the Scope of Reproducible Neural Architecture Search, ICLR 2020

NAS-Bench-NLP Neural Architecture Search Benchmark for Natural Language Processing, arXiv 2020
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Graph NAS Search Space

 AGG(⋅):  how to aggregate information from neighbors

 Requirement: permutation-invariant

 Common choices: mean, max, sum, etc.

 𝑎𝑖𝑗: the importance of neighbors 

 COMBINE ⋅ : how to update representation
 Common choices: CONCAT, SUM, MLP, etc.

 𝜎(⋅): Sigmoid, ReLU, tanh, etc.

 Dimensionality of ℎ𝑖
𝑙

, the number of attention heads (when using attention)

Graph Neural Architecture Search, IJCAI 2020.



 Most previous general NAS search strategies can be directly applied

 Reinforcement learning

 Controller: 

 Evolutionary

 Define how to evolve and how to select

 Differentiable

 Super-net: mix all possible operations 
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Graph NAS Search Strategy

Sample architecture with probability 

Compute gradient and update the controller

Controller
Train the architecture 

to get its accuracy 



Survey

Paper collection: https://github.com/THUMNLab/awesome-auto-graph-learning

Tutorial KDD 2021: https://zw-zhang.github.io/files/2021_KDD_AutoMLonGraph.pdf

Automated Machine Learning on Graphs: A Survey. IJCAI, 2021.
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https://github.com/THUMNLab/awesome-auto-graph-learning
https://zw-zhang.github.io/files/2021_KDD_AutoMLonGraph.pdf


Challenges for the Existing Methods

13

 The existing methods partially solve the applicability problem

…but GraphNAS has many unique and unsolved challenges

Graph Structure

Scalability

Generalization



Challenges: Graph Structure
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 Graph structure is the key to GraphNAS

 Previous works assume fixed structures

→ Is the input graph structure optimal?

→ How to select architectures and graph 

structures that suit each other?

G = ( V, E )

Links

Challenge: how to theoretically model graph structure in GraphNAS 



 Different operations fit graphs with different amount of information

 Factors to determine the amount of information: signal to noise ratio 

 Synthetic datasets: 
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Analysis

More structural information

Less noise Large noise

Graph Differentiable Architecture Search with Structure Learning. NeurIPS, 2021.How to reduce structural noises while searching architectures?
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GASSO: Jointly Learn Graph Structure and Neural 
Architecture

Graph Differentiable Architecture Search with Structure Learning. NeurIPS, 2021.

Learn graph structure and neural architecture through 

a joint optimization scheme
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GASSO: Model

 Formulation: tri-level optimization

 Feature Smoothness Constraint

 Mask original edges: 𝐺 = 𝐺𝑜 ⊙𝑀

 Possible extensions: adding edges

 Challenge: time complexity, there are 𝑂 𝑛2 possible edges
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GASSO: Experiments

 Experiments on graph benchmarks

 Experiments on larger graph datasets



20

Social Networks

 WeChat: 1.29 billion monthly active users (Aug 2022)

 Facebook: 2.8 billion active users (2020)

E-commerce Networks

 Millions of sellers, about 0.9 billion buyers, 10.6

trillion turnovers in China (2019)

Citation Networks

 131 million authors, 185 million publications, 754 

million citations (Aminer, Aug 2022)

Challenge: Large-scale Graphs

Challenge: how to efficiently scale to billion-scale graphs
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SuperNet Training

 Supernet: combine all possible operations of the search space

 Trained by sampling architectures and back-propagations

 Supernet training for large-scale graphs:

 Using the whole graph → computational bottleneck

 Straight-forwardly sampling subgraphs → consistency issue
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GAUSS: Large-scale Graph Neural Architecture Search

Large-scale Graph Neural Architecture Search. ICML, 2022.

Jointly sample subgraphs and architectures to find the 

most suitable architecture
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GAUSS: Architecture Importance Sampling

 Goal: stabilize the training of the supernet

 Method: important sampling of architectures

 Γ 𝒜 : proposal distribution 

 Learning proposal distribution: reinforcement learning with GRU controller

Reward function: performance + regularizer 
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GAUSS: Architecture Peer Learning on Graph

 Goal: smooth the optimization objective

 Assumption: “senior students” can teach “junior students”

 Method: assign weights to different samples, gradually progress from easier 

parts to difficult parts 
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GAUSS: Experiments

x1000
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Challenge: Distribution Shifts

Challenge: how to make GraphNAS capable of 

out-of-distribution generalization 

 Distribution shifts naturally exist in graph data

 Searching a fixed architecture on the training data may fail to generalize
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GRACES: Graph Neural Architecture Search under 
Distribution Shifts

Graph Neural Architecture Search under Distribution Shifts. ICML, 2022.

Customize a unique GNN architecture for each graph 

instance to handle distribution shifts 



 Goal: learn a vector representation for each graph to reflect its characteristics 

 Challenge: preserve diverse properties of the original graph

 Method: self-supervised disentangled graph encoder

 Encoder: disentangled GNN

 Supervised loss: the downstream task

 Self-supervised loss: node degree as regularization
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GRACES: Graph Encoder



 Goal: customize an architecture based on the graph representation

 Assumption: graphs with similar characteristics need similar architectures

 Method: prototype based architecture customization

 Probabilities of choosing operations:

 Regularizer to avoid mode collapse:
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GRACES: Architecture Customization 
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GRACES: Learning Architecture Parameters

 Goal: learn parameters for the customized architectures

 Method: customized super-network 

 Loss functions: 
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GRACES: Experiments

Synthetic OOD graph datasets Real-world OOD graph datasets

Customization of architectures



Introduction – AutoGL

AutoGL

Open source Easy to use Flexible to be extended

https://mn.cs.tsinghua.edu.cn/AutoGL

https://github.com/THUMNLab/AutoGL

 We design an autoML framework & toolkit for machine learning on graphs.
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Overall Framework
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AutoGL

Dataset

Auto 

Feature 

Engineering

Model 

Training

Hyper-

Parameter 

Optimization
Auto

Ensemble

AutoGL 

Solver

Graph 

Data

Neural 

Architecture 

Search

Modular Design

 Key modules: 

 AutoGL Dataset: manage graph datasets

 AutoGL Solver: a high-level API to control the overall pipeline 

 Five functional modules: 

 Auto Feature Engineering

 Neural Architecture Search 

 Hyper-parameter Optimization

 Model Training

 Auto Ensemble

34



AutoGL Roadmap

2023.062021.122021.72020.12

v0.1
 Initial release

 Overall pipeline

 Dataset, feature engineering, 

model training, auto ensemble 

 Hyper-parameter optimization 

v0.2
 Neural Architecture Search

 Graph sampling

 Model enhancement

 Unit tests

v0.3

 DGL backend, PyG 2.0

 Heterogenous graphs

 Decoupled modeling 

 NAS enhancements

2022.11

v0.4 (scheduled)
 Large-scale graphs

 Model robustness

 NAS/GNN model enhancements

 Chinese tutorial/documentation

v0.5 (scheduled)
 Explainable models

 Downstream tasks

 Graph generation

 PPI (collaboration)

…

 Team member (~15)

 Architect: Chaoyu Guan (v0.1-v0.3), Yijian Qin (v0.4-v0.5)

 Programmer: Haoyang Li, Zeyang Zhang, Heng Chang, Zixin Sun, Beini Xie, 

Jie Cai, Zizhao Zhang, Jiyan Jiang, Yao Yang, Fang Shen

 Tester: Yipeng Zhang, Peiwen Li
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Media Coverage
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The Evaluation of Graph NAS Methods
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 How to properly evaluate different GraphNAS algorithms

 Incomparable and irreproducible results

 Computationally expensive

 Diverse evaluation protocols   
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 The first tabular NAS benchmark for GraphNAS

 Unified, Reproducible, Efficient

 Provide detailed metrics of all architectures (exhaust 8,000 GPU hours)

NAS-Bench-Graph

NAS-Bench-Graph: Benchmarking Graph Neural Architecture Search. NeurIPS, 2022.
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 Search space:

 Macro space: 

 Operations: GCN, GAT, GraphSAGE, GIN, ARMA, k-GNN, MLP

 Datasets:

NAS-Bench-Graph: Designs

26,206 architectures 

cover representative GNNs

9 datasets

different sizes/domains

NAS-Bench-Graph: Benchmarking Graph Neural Architecture Search. NeurIPS, 2022.
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NAS-Bench-Graph: Usage

 Integrated with two representative libraries: AutoGL and NNI

 Example: ~10 lines of codes

 Open source: https://github.com/THUMNLab/NAS-Bench-Graph

NAS-Bench-Graph: Benchmarking Graph Neural Architecture Search. NeurIPS, 2022.

https://github.com/THUMNLab/NAS-Bench-Graph
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Performance distribution Architecture distribution & Correlation

Architecture space smoothness Influence of operations at different depth

NAS-Bench-Graph: Analysis

NAS-Bench-Graph: Benchmarking Graph Neural Architecture Search. NeurIPS, 2022.



Recap: Our Recent Works on GraphNAS

42

Graph Structure

Scalability

Generalization

NAS-Bench-Graph

AutoGL: a library for automated graph machine learning
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THANK YOU!
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