

Intention-aware Sequential Recommendation with Structured Intent Transition

Haoyang Li Tsinghua University

Recommender Systems (RS) are Ubiquitous

A day in our life with Recommender Systems

Problem of Today's RS: User Intentions

Can RS understand the <u>user intentions</u> behind the <u>behaviors</u>?
 Behaviors are highly driven by user intentions in the real world.

A Possible Solution: Learn from Sequence

□ Identifying user intentions exactly from one item is difficult, but may be possible from a sequence of items(behaviors).

Problem of Today's RS: User Intentions

- □ Can RS model the <u>transition</u> of user intentions explicitly?
 - □ In the real world, user intentions could be <u>dynamic</u> rather than static.
 - □ "dynamic" : "intent transition"

Sequence Modeling

Sequential Recommendation

- Order matters in real-world situations.
- □ Sequence Modeling

Markov Chain: fails on long sequences, data sparsity problem

Recurrent Neural Network: fails on longer sequences, high cost

Modeling User Intentions is Challenging

□ The existing methods capture behavior patterns. They fail to identify user intentions and model intent transition explicitly.

□ The properties of user intentions in Recommendation:

Problem

□ Intention-aware Sequential Recommendation

□ Goal: for each user, given the sequence of interacted items $v_1, ..., v_t$ with available description information, predict the v_{t+1} at time index t + 1.

Description information: title, categories, reviews...

We extract keywords from the description information and refer to these extracted keywords as *concepts*.

□ User intentions could be reflected in these concepts.

□ E.g.,

 \square "Yes, it's <u>perfect</u> for <u>self-defense</u>." \rightarrow "perfect" "self-defense"

 \square "This might be <u>great</u> for my <u>son</u> playing <u>baseball</u>." \rightarrow "great" "son" "baseball"

Making it possible to identify intentions

Model Framework

Transformer-based Encoder

D Embedding Submodule

 $\square \text{ Embedding } (h_i) = \text{ item } (v_i) + \text{ position } (p_i) + \text{ concepts } (c_j)$ Item Property Order Potential Intents

□ Input hidden representation: $H^0 = [h_1^0, h_2^0, ..., h_T^0]$ $h_i = v_i + p_i + \sum_{e_{i,j}=1} c_j$ □ Self-attention Submodule

D Capture the dependencies among items within a behavior sequence

$$\begin{split} \boldsymbol{S}^{l} &= \mathrm{SA}(\boldsymbol{H}^{l}) = \mathrm{Attention}(\boldsymbol{H}^{l}\boldsymbol{W}_{Q}^{l},\boldsymbol{H}^{l}\boldsymbol{W}_{K}^{l},\boldsymbol{H}^{l}\boldsymbol{W}_{V}^{l}) \\ \boldsymbol{H}^{l+1} &= \mathrm{FFN}(\boldsymbol{S}^{l}) = \mathrm{ReLU}(\boldsymbol{S}^{l}\boldsymbol{W}_{1}^{l} + \boldsymbol{b}_{1}^{l})\boldsymbol{W}_{2}^{l} + \boldsymbol{b}_{2}^{l} \end{split}$$

Goals: Learn users' behavior patterns and filter some noises

Intent Extraction

 \Box In this step, we explicitly **extract explainable user intents** from the encoded sequence hidden representations $X = H^L$.

D Goal: Infer a multi-hot intention vector $\boldsymbol{m}_t = [m_{t,1}, ..., m_{t,K}]$

 $\square m_{t,k} = 1 \Leftrightarrow k^{\text{th}}$ concept belongs to the user intentions at time t

A straightforward method: treating *m_t* as a parameter to be optimized? (×)
 over-parameterization; cause efficiency burdens
 We adopt a prototype-based method:

 $\Box \text{ define } K \text{ intention prototypes, calculate similarity } s_{t,k} = \frac{\boldsymbol{x}_t \cdot \boldsymbol{c}_k}{\|\boldsymbol{x}_t\|_2 \|\boldsymbol{c}_k\|_2}$ $\Box \text{ draw } \boldsymbol{m}_t \text{ from } \boldsymbol{m}_t \sim \text{Categorical}(\text{Softmax}(s_{t,1}, s_{t,2}, ..., s_{t,K}))$

Structured Intent Transition

- □ In this step, we model intent transitions with GNN.
 - \square Learn a personalized intent feature matrix $m{Z}_t = [m{z}_{t,1},...,m{z}_{t,K}] \in \mathbb{R}^{K imes d'}$
 - \square From item space to intention space $\boldsymbol{z}_{t,k} = m_{t,k} \text{MLP}_k(\boldsymbol{x}_t)$
 - □ Model the intent transition on the concept graph A (ConceptNet)
 - Pre-defined concepts and their relations can be treated as knowledge; underlying cognitive activity is stored in the connections among concepts.

 \Box We adopt the message-passing framework $Z_{t+1} = \mathcal{F}(Z_t, \mathbf{A})$

Intent Decoder

□ After obtaining the future intent features Z_{t+1} and intent vector m_{t+1} , the intent decoder is defined as:

$$\boldsymbol{x}_{t+1} = \sum_{k=1}^{K} m_{t+1,k} \mathrm{MLP}'_{k}(\boldsymbol{z}_{t+1,k})$$

D Recommendation probability of item v_{t+1} :

$$p(v_{t+1}|[v_1, v_2, ..., v_t]) = \text{Softmax}(\boldsymbol{x}_{t+1}\boldsymbol{V}^T)$$

$$\square \text{ Objective Function} \qquad \mathcal{L}_u = \frac{1}{|\mathcal{S}^{(u)}|} \sum_{v_{t+1} \in \mathcal{S}^{(u)}} -\log p(v_{t+1}|[v_1, v_2, ..., v_t])$$

□ We aim to answer the following three questions:

Q1: How does our method perform compared with other state-of-

the-art sequential recommendation methods?

Q2: Can our method identify explainable user intents and model the structured intent transition accurately?

□ Q3: Is the intent extraction and structured intent transition module helpful in our method?

Experimental Settings

Datasets

D Amazon: contains a large number of product reviews from Amazon.com

□ We choose the "Beauty" category dataset.

- **D** Steam: a popular online video game platform
- **D** Epinions: a popular online consumer review website Epinions.com
- □ MovieLens: a dataset about movie rating, including ML-1m an ML-20m

Experimental Settings

Datasets preprocessing procedures

Convert all reviews/ratings to implicit feedback of 1

- **□** remove users and items if they have fewer than 5 records
- D build the interaction sequence sorted by the timestamps for each user
- obtain concepts of items from the available meta-data
 - **D** e.g., items' descriptions, reviews, etc.

Dataset	#Users	#Items	#Interactions	Avg.length	Density
Beauty	40,226	54,542	0.35m	8.8	0.02%
Steam	281,428	13,044	3.5m	12.4	0.10%
Epinions	5,015	8,335	26.9k	5.37	0.06%
ML-1m	6,040	3,416	1.0m	163.5	4.79%
ML-20m	138,493	26,744	20m	144.4	0.54%

TABLE 3: Statistics of the datasets.

TABLE 4:	Statistics	of prep	processed	concepts	of the	datasets

Dataset	#Concepts	#Edges	Avg.concepts/item
Beauty	592	2,791	4.45
Steam	229	472	4.49
Epinions	114	467	5.50
ML-1m	96	327	1.94
ML-20m	316	842	4.21

Experimental Settings

Evaluation metrics

$$\square \text{ Hit Rate (HR)} \qquad \text{HR}@k = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \delta(|\mathcal{T}_u \cap \mathcal{R}_{u,k}| > 0)$$

□ Normalized Discounted Cumulative Gain (NDCG) NDCG@ $k = \frac{1}{Z}$ DCG@k $= \frac{1}{Z} \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \sum_{i=1}^{k} \frac{\delta(r_{u,i} \in \mathcal{T}_u)}{\log_2(i+1)}$

□ Mean Reciprocal Rank (MRR)

$$MRR = \frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \frac{1}{rank_u}$$

Baselines

- □ Non-sequential methods
 - □ PopRec, BPR-MF, NCF

D Sequential methods

- □ Markov chain based methods: FPMC, Caser
- □ RNN based methods: GRU4Rec, GRU4Rec+
- □ Transformer based methods: **SASRec**, **BERT4Rec**

Experimental Results

Recommendation Accuracy

Datasets	Metric	PopRec	BPR-MF	NCF	FPMC	GRU4Rec	GRU4Rec ⁺	DGCF	Caser	SASRec	BERT4Rec	ISRec	Improv.
Beauty	HR@1 HR@5 HR@10 NDCG@5 NDCG@10 MRR	0.0077 0.0392 0.0762 0.0230 0.0349 0.0437	0.0415 0.1209 0.1992 0.0814 0.1064 0.1006	$\begin{array}{c} 0.0407 \\ 0.1305 \\ 0.2142 \\ 0.0855 \\ 0.1124 \\ 0.1043 \end{array}$	0.0435 0.1387 0.2401 0.0902 0.1211 0.1056	0.0402 0.1315 0.2343 0.0812 0.1074 0.1023	0.0551 0.1781 0.2654 0.1172 0.1453 0.1299	0.0626 0.1835 0.2778 0.1241 0.1543 0.1381	0.0475 0.1625 0.2590 0.1050 0.1360 0.1205	0.0906 0.1934 0.2653 0.1436 0.1633 0.1536	$\begin{array}{c} 0.0953\\ \hline 0.2207\\ \hline 0.3025\\ \hline 0.1599\\ \hline 0.1862\\ \hline 0.1701\\ \end{array}$	0.1233 0.2734 0.3594 0.2020 0.2296 0.2081	29.38% 23.88% 18.81% 26.33% 23.31% 22.34%
Steam	HR@1 HR@5 HR@10 NDCG@5 NDCG@10 MRR	0.0159 0.0805 0.1389 0.0477 0.0665 0.0669	0.0314 0.1177 0.1993 0.0744 0.1005 0.0942	0.0246 0.1203 0.2169 0.0717 0.1026 0.0932	0.0358 0.1517 0.2551 0.0945 0.1283 0.1139	0.0574 0.2171 0.3313 0.1370 0.1802 0.1420	0.0812 0.2391 0.3594 0.1613 0.2053 0.1757	0.0564 0.1825 0.2934 0.1392 0.1717 0.1400	0.0495 0.1766 0.2870 0.1131 0.1484 0.1305	0.0885 0.2559 0.3783 0.1727 0.2147 0.1874	$\begin{array}{c} 0.0957\\ \hline 0.2710\\ \hline 0.4013\\ \hline 0.1842\\ \hline 0.2261\\ \hline 0.1949\\ \end{array}$	0.1450 0.3622 0.5072 0.2570 0.3036 0.2612	51.52% 33.65% 26.39% 39.52% 34.28% 34.02%
Epinions	HR@1 HR@5 HR@10 NDCG@5 NDCG@10 MRR	0.0075 0.0339 0.0831 0.0206 0.0358 0.0430	0.0151 0.0472 0.1005 0.0316 0.0464 0.0540	0.0155 0.0538 0.0975 0.0338 0.0474 0.0543	0.0162 0.0578 0.1083 0.0373 0.0512 0.0546	0.0169 0.0629 0.1280 0.0431 0.0565 0.0681	0.0176 0.0737 0.1380 0.0456 0.0657 0.0700	$\begin{array}{c} 0.0188\\ 0.0736\\ 0.1353\\ 0.0491\\ 0.0656\\ 0.0693 \end{array}$	$\begin{array}{c} 0.0164 \\ 0.0733 \\ 0.1351 \\ 0.0444 \\ 0.0642 \\ 0.0668 \end{array}$	0.0217 0.0822 0.1358 0.0530 0.0701 0.0699	$\begin{array}{c} 0.0220\\ \hline 0.0866\\ \hline 0.1462\\ \hline 0.0534\\ \hline 0.0724\\ \hline 0.0705\\ \end{array}$	0.0282 0.1129 0.1949 0.0699 0.0962 0.0885	28.18% 30.37% 33.31% 30.90% 32.87% 25.53%
ML-1m	HR@1 HR@5 HR@10 NDCG@5 NDCG@10 MRR	0.0141 0.0715 0.1358 0.0416 0.0621 0.0627	0.0914 0.2866 0.4301 0.1903 0.2365 0.2009	$\begin{array}{c} 0.0397\\ 0.1932\\ 0.3477\\ 0.1146\\ 0.1640\\ 0.1358\end{array}$	$\begin{array}{c} 0.1386 \\ 0.4297 \\ 0.5946 \\ 0.2885 \\ 0.3439 \\ 0.2891 \end{array}$	0.1583 0.4673 0.6207 0.3196 0.3627 0.3041	0.2092 0.5103 0.6351 0.3705 0.4064 0.3462	$\begin{array}{c} 0.1770 \\ 0.4485 \\ 0.6032 \\ 0.3162 \\ 0.3660 \\ 0.3105 \end{array}$	0.2194 0.5353 0.6692 0.3832 0.4268 0.3648	0.2351 0.5434 0.6629 0.3980 0.4368 0.3790	$\begin{array}{r} 0.2863\\ \hline 0.5876\\ \hline 0.6970\\ \hline 0.4454\\ \hline 0.4818\\ \hline 0.4254\\ \end{array}$	0.3184 0.6262 0.7363 0.4831 0.5189 0.4589	11.21% 6.57% 5.64% 8.46% 7.70% 7.87%
ML-20m	HR@1 HR@5 HR@10 NDCG@5 NDCG@10 MRR	0.0221 0.0805 0.1378 0.0511 0.0695 0.0709	0.0553 0.2128 0.3538 0.1332 0.1786 0.1503	0.0231 0.1358 0.2922 0.0771 0.1271 0.1072	0.1079 0.3601 0.5201 0.2239 0.2895 0.2273	0.1459 0.4657 0.5844 0.3090 0.3637 0.2967	0.2021 0.5118 0.6524 0.3630 0.4087 0.3476	0.1760 0.4361 0.6252 0.3267 0.3809 0.3278	0.1232 0.3804 0.5427 0.2538 0.3062 0.2529	$\begin{array}{c} 0.2544 \\ 0.5727 \\ 0.7136 \\ 0.4208 \\ 0.4665 \\ 0.4026 \end{array}$	$\begin{array}{c} 0.3440\\ \hline 0.6323\\ \hline 0.7473\\ \hline 0.4967\\ \hline 0.5340\\ \hline 0.4785\\ \end{array}$	$\begin{array}{c} 0.3505 \\ 0.6484 \\ 0.7689 \\ 0.5024 \\ 0.5401 \\ 0.4841 \end{array}$	1.89% 2.55% 2.89% 1.15% 1.14% 1.17%

□ Sequential > Non-sequential

□ Self-attention can provide large

performance gains.

Our method outperforms all the

baselines.

□ The sparser the dataset, the larger

the improvement of our method.

Experimental Results

□ Showcases of Intent Extraction and Structured Intent Transition

Experimental Results

□ Ablation studies and hyperparameters sensitivities

TABLE 5: Performance comparison of ISRec and variants.

	В	eauty	М	IL-1m
	HR@10 NDCG@10		HR@10	NDCG@10
ISRec	0.3594	0.2296	0.7363	0.5189
w/o GNN	0.3311	0.2095	0.7222	0.4978
w/o GNN&Intent	0.3092	0.1965	0.7058	0.4731
BERT4Rec + concept	0.3037	0.1886	0.6987	0.4824
SASRec + concept	0.3061	0.1845	0.6972	0.4643

Conclusions

We study the intent-aware sequential recommendation with structured intent transition.

Why can't the current Sequential Recommender Systems make us satisfied enough?

Modeling user intentions with GNN: Try to promote human-like Recommender Systems.

References

□ W.-C. Kang, *et al.* "Self-attentive sequential recommendation." ICDM, 2018.

- □ F. Sun, *et al.* "Bert4rec: Sequential recommendation with bidirectional encoder representations from transformer." CIKM, 2019.
- □ J. Tang, *et al.* "Personalized top-n sequential recommendation via convolutional sequence embedding." WSDM, 2018.
- R. Speer, *et al.* "Conceptnet 5: A large semantic network for relational knowledge." in The People's Web Meets NLP. Springer, 2013.
- □ X. He, *et al.* "Neural collaborative filtering." WWW, 2017.
- □ S. Wang, *et al.* "Intention2basket: A neural intention-driven approach for dynamic next-basket planning." IJCAI, 2020.
- N. Zhu, *et al.* "Sequential modeling of hierarchical user intention and preference for nextitem recommendation." WSDM, 2020.
- □ Y. Cen "Controllable Multi-Interest Framework for Recommendation." KDD 2020.

Intention-aware Sequential Recommendation with Structured Intent Transition

Journals & Magazines > IEEE Transactions on Knowledg... > Early Access 🔞

Intention-aware Sequential Recommendation with Structured Intent Transition

Publisher: IEEE

Haoyang Li; Xin Wang; Ziwei Zhang; Jianxin Ma; Peng Cui; Wenwu Zhu All Authors

29 Full Text Views

Abstract	Abstract:
Authors	intentions behind their decision making processes. In order to achieve better performance, it is
Keywords	historical interaction behaviors. However, user intentions are seldom fully or easily observed in
Metrics	to mention using them effectively into recommendation. In this paper, we present the Intention-
Media	Aware Sequential Recommendation (ISRec) method, for capturing the underlying intentions of each user that may lead to her next consumption behavior and improving recommendation performance.
	specifically, we first extract the intentions of the target user from sequential contexts, then take complex intent transition into account through the message-passing mechanism on an intention
	graph, and finally obtain the future intentions of this target user from inference on the intention graph. The sequential recommendation for a user will be made based on the predicted user
	intentions, offering more transparent and explainable intermediate results for each recommendation.
	Extensive experiments on various real-world datasets demonstrate the superiority of our method
	against several state-of-the-art baselines in sequential recommendation in terms of different metrics.

R

C

Ē.

Published in: IEEE Transactions on Knowledge and Data Engineering (Early Access)

Haoyang Li; Xin Wang; Ziwei Zhang; Jianxin Ma; Peng Cui; Wenwu Zhu. Intention-aware Sequential Recommendation with Structured Intent Transition. *IEEE TKDE*, 2021.

Thanks!

Haoyang Li, Tsinghua University lihy18@mails.tsinghua.edu.cn

M odelFram ew ork

Structured Inte Transition	User Intentions at t			GNN Z	:	User intentions at t + 1
	Intent Extraction	Module	1		ntent Decoder	
Transformer Layer	h1 x1	h ^L _{f=1}			x _{t+1}	• $p(v_{t+1} [v_{t},,v_{t}])$
Embedding Layer	₽1 Item Embedding + ₽ Poston Embedding + Poston Embedding + ∑C1 Concepts Embedding	v_{t-1} + p_{t-1} + Σc_{t-1}	v_t p_t + Σc_t		<i>v</i> ₁₊₁	litem ID Embedding
User Interaction Sequence Su		v _{t-1}	ve	time		Activated Intentio

Experim entalSettings

Datasets

Amazon: contains a large number of product reviews from Amazon.com
 We choose the "Beauty" category dataset.
 Steam: a popular online video game platform

Epinions: a popular online consumer review website *Epinions.com*

□ MovieLens: a dataset about movie rating, including ML-1m an ML-20m

Conclusions

□ Why can't the current Sequential Recommender Systems make us satisfied enough?

Modeling user intentions with GNN: Try to promote human-like Recommender Systems.