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Recommender Systems (RS) are Ubiquitous

O A day in our life with Recommender Systems
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Problem of Today’s RS: User Intentions

O Can RS understand the user intentions behind the behaviors?
O Behaviors are highly driven by user intentions in the real world.
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A Possible Solution: Learn from Sequence

O Identifying user intentions exactly from one item is difficult,
but may be possible from a sequence of items(behaviors).
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Problem of Today’s RS: User Intentions

O Can RS model the transition of user intentions explicitly?
O In the real world, user intentions could be dynamic rather than static.

O “dynamic” : “intent transition”
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Sequence Modeling

O Sequential Recommendation
O Order matters in real-world situations.
O Sequence Modeling

0 Markov Chain: fails on long sequences, data sparsity problem

O Recurrent Neural Network: fails on longer sequences, high cost
O Transformer V2 vt Vt+1
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Modeling User Intentions is Challenging

O The existing methods capture behavior patterns. They fall to
identify user intentions and model intent transition explicitly.

O The properties of user intentions in Recommendation:

T
Unobserved Multiple Correlated Dynamic

1 ! 1 !

auxiliary information identify cognitive relations intent transition



Problem

O Intention-aware Sequential Recommendation
O Goal: for each user, given the sequence of interacted items vy, ..., v; with
available description information, predict the v, at time index t + 1.
O Description information: title, categories, reviews...

O We extract keywords from the description information and refer to these
extracted keywords as concepts.
O User intentions could be reflected in these concepts.

Making it possible to

O E.g., identify intentions

[ “Yes, it's perfect for self-defense.” — “perfect” “self-defense”

O “This might be great for my son playing baseball.” — “great” “son” “baseball”




Model Framework
3. Structured
Intent Transition

2. Intent 4. Intent
Extraction Decoder

1. Transformer- _
based Encoder




Transformer-based Encoder

O Embedding Submodule
O Embedding (h;) = item (v;) + position (p;) + concepts (c;)

ltem Property Potential Intents
O Input hidden representation: H° =[h},h),..,h}] hi=vi+p;+ Y c;
O Self-attention Submodule

O Capture the dependencies among items within a behavior sequence
S' =SA(H') = Attention(HEWé, H'W. H'W})
H'"*!' = FFN(S') = ReLU(S'W/ + b} )W + b,

O Goals: Learn users’ behavior patterns and filter some noises



Intent Extraction

O In this step, we explicitly extract explainable user intents
from the encoded sequence hidden representations X = H™.

O Goal: Infer a multi-hot intention vector m; = [m; 4, ..., m¢ k|
Om =1 k'™ concept belongs to the user intentions at time ¢

O A straightforward method: treating m, as a parameter to be optimized? (X)
O over-parameterization; cause efficiency burdens

0 We adopt a prototype-based method:
O define K intention prototypes, calculate similarity
O draw m; from



Structured Intent Transition

O In this step, we model intent transitions with GNN.

O Learn a personalized intent feature matrix
O From item space to intention space 2z x = m: MLPg(x:)

O Model the intent transition on the concept graph A (ConceptNet)
O Pre-defined concepts and their relations can be treated as knowledge;
underlying cognitive activity is stored in the connections among concepts.
O We adopt the message-passing framework Z;,, = F(Z;, A)

ltem space Structured intent space



Intent Decoder

O After obtaining the future intent features Z;,, and intent
vector m,, 1, the intent decoder is defined as:

O Recommendation probability of item v, 4:

O Objective Function



Experiments

O We aim to answer the following three questions:
O Q1: How does our method perform compared with other state-of-
the-art sequential recommendation methods?
O Q2: Can our method identify explainable user intents and model the
structured intent transition accurately?
O Q3: Is the intent extraction and structured intent transition module

helpful in our method?



Experimental Settings

[0 Datasets

OO Amazon: contains a large number of product reviews from Amazon.com
OO We choose the "“Beauty” category dataset.

O Steam: a popular online video game platform

O Epinions: a popular online consumer review website Epinions.com

O MovielLens: a dataset about movie rating, including ML-1m an ML-20m

IQIOI‘IS

+V\"~

’Odays



Experimental Settings

O Datasets preprocessing procedures

[ convert all reviews/ratings to implicit feedback of 1
O remove users and items if they have fewer than 5 records
O build the interaction sequence sorted by the timestamps for each user
O obtain concepts of items from the available meta-data
O e.qg., items’ descriptions, reviews, etc.



Experimental Settings

O Evaluation metrics
O Hit Rate (HR)

O Normalized Discounted Cumulative Gain (NDCG)

O Mean Reciprocal Rank (MRR)



Baselines

O Non-sequential methods
O PopRec, BPR-MF, NCF

O Sequential methods

0 Markov chain based methods: FPMC, Caser
0 RNN based methods: GRU4Rec, GRU4Rec+
O Transformer based methods: SASRec, BERT4Rec



Experimental Results

O Recommendation Accuracy

O Sequential > Non-sequential

O Self-attention can provide large
performance gains.

O Our method outperforms all the
baselines.

O The sparser the dataset, the larger

the improvement of our method.



Experimental Results

[0 Showcases of Intent Extraction and Structured Intent Transition
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Experimental Results

O Ablation studies and hyperparameters sensitivities

TABLE 5: Performance comparison of ISRec and variants.

Beauty ML-Im
HR@10 NDCG@10 HR@10 NDCG@10
ISRec 0.3594  0.2296 0.7363  0.5189
w/o GNN 0.3311  0.2095 07222  0.4978
w /0o GNN&Intent 0.3092  0.1965 0.7058  0.4731
BERT4Rec + concept  0.3037  0.1886 0.6987  0.4824
SASRec + concept 0.3061  0.1845 0.6972  0.4643
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Conclusions

O We study the intent-aware sequential recommendation with structured

Intent transition.
O Why can’t the current Sequential Recommender Systems make us

satisfied enough?

mE SR, MAME FRL

User Behaviors User Intentions

A Y

Modeling user intentions with GNN:

Try to promote human-like Recommender Systems.
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