
Eigen-GNN: A Graph Structure Preserving
Plug-in for GNNs

Ziwei Zhang , Peng Cui , Jian Pei , Fellow, IEEE, Xin Wang , and Wenwu Zhu , Fellow, IEEE

Abstract—Graph Neural Networks (GNNs) are emerging machine learning models on graphs. Although sufficiently deep GNNs are

shown theoretically capable of fully preserving graph structures, most existing GNN models in practice are shallow and essentially

feature-centric. We show empirically and analytically that the existing shallow GNNs cannot preserve graph structures well. To

overcome this fundamental challenge, we propose Eigen-GNN, a simple yet effective and general plug-in module to boost GNNs ability

in preserving graph structures. Specifically, we integrate the eigenspace of graph structures with GNNs by treating GNNs as a type of

dimensionality reduction and expanding the initial dimensionality reduction bases. Without needing to increase depths, Eigen-GNN

possesses more flexibilities in handling both feature-driven and structure-driven tasks since the initial bases contain both node features

and graph structures. We present extensive experimental results to demonstrate the effectiveness of Eigen-GNN for tasks including

node classification, link prediction, and graph isomorphism tests.

Index Terms—Graph neural networks, eigenvector, graph structure, dimensionality reduction
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1 INTRODUCTION

GRAPHS are natural representations for complex data
that cannot be represented well using simpler data

structures, such as social networks, biomedical graphs, and
traffic networks. In a graph, the nodes represent objects,
and the edges represent relations between objects. Besides
carrying relation information through graph structures,
graphs are often associated with rich content information
such as attributes of nodes. Content (features) and struc-
tures often provide information complementary to each
other. In different analytics tasks, content and structures
play different roles. Some analytics tasks focus on the con-
tent information, e.g., in document topic classifications, the
content of documents usually provides dominant informa-
tion. We call such tasks feature-driven. In some other analyt-
ics tasks, structures are the major player. A great example of
such structure-driven tasks is influence analysis in social net-
works. Of course, there are always some analytics tasks
where both content and structure information are needed.
For example, in social recommendations, both user profiles

(content) and user interactions (structure) are indispensable
in understanding user preferences.

Recently, Graph Neural Networks (GNNs) are emerging
machine learning models on graphs and are expected to
provide a unified framework to deal with features and
structures simultaneously. For example, in the message-
passing framework [1], nodes exchange information with
their neighbors in each step to update their feature informa-
tion. In this way, GNNs model node attributes and graph
structures in an end-to-end learning architecture.

It has been proven theoretically that GNNs with a suffi-
ciently large number of layers can fully preserve many
important graph structures such as the limiting distribution
of a random walk on graphs [2], [3], graph moments of any
order [4], or even universal approximations under certain
conditions [5], [6]. However, training deep GNNs suffers
from many practical challenges, such as over-smoothing [7],
[8]. In practice, most successful GNNs are shallow, having
no more than three or four layers [9].

However, shallow GNNs are distant from those theoreti-
cally expressive GNNs that have a large number of layers.
Theoretical analysis shows that the existing shallow GNNs
essentially are feature-centric, i.e., node attributes play
major roles, and graph structures only provide auxiliary
information. For example, Li et al. [7] analyzed GNNs as a
special form of Laplacian smoothing of node attributes.
Maehara [10] and Wu et al. [11] showed that GNNs are
equivalent to a low-pass filter by treating node features as
graph signals. Given these discussions showing the strength
of GNNs in preserving features, a critical question is whether
the shallow GNNs in practice can sufficiently preserve graph
structures, which motivates this study.

To answer this question, we first report experimental
analysis on a series of synthetic datasets (please refer to Sec-
tion 3.1 for details). We observe consistent results with the
analysis mentioned above: in the structure-driven tasks
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where graph structures are heavily involved, the existing
shallow GNNs have poor performance. We further examine
this observation by treating GNNs as a type of dimensional-
ity reduction process. We show that the features of nodes
provide the initial bases for the dimensionality reduction,
making the resulted predictions of the existing shallow
GNNs tend to be feature-centric. Therefore, the existing
shallow GNNs are incapable of sufficiently preserving
graph structures in practice.

Can we have a simple and general mechanism to empower the
practical shallow GNNs to preserve graph structures well? To
tackle this fundamental challenge, we propose Eigen-
GNN,1 a simple yet effective and general plug-in module to
boost GNNs ability in preserving graph structures. Specifi-
cally, we integrate the eigenspace of graph structures with
GNNs by concatenating the eigenvectors of a graph struc-
ture matrix to the node attributes. In this way, since the ini-
tial bases are expanded to contain both node features and
graph structures, Eigen-GNN has dramatically enhanced
capabilities in exploring node features and graph structures
simultaneously, and is suitable and adaptive for both fea-
ture-driven and structure-driven tasks. We also demon-
strate that Eigen-GNN has several desirable theoretical
properties such as permutation-equivariance and generality
in plugging into many existing GNNs.

To assess the effectiveness of our proposed method, we
conduct extensive experiments for tasks including node
classification, link prediction, and graph isomorphism tests.
The experimental results show that our proposed method
consistently and significantly outperforms the baselines
when the tasks and datasets are more structure-driven, and
retains comparable performance with existing GNNs in fea-
ture-driven scenarios.

Our contributions are summarized as follows:

� Wedemonstrate thatmost existing shallowGNNs can-
not preserve graph structures well in practice through
both empirical analysis and analytical exploration.

� We propose Eigen-GNN, a simple yet effective and
general plug-in module to boost GNNs ability in pre-
serving graph structures. Eigen-GNN has several
desirable theoretical properties and can be applied
to many existing GNN architectures.

� Our extensive experimental results demonstrate that
the proposed Eigen-GNN can preserve both features
and graph structures more effectively and flexibly.

The rest of the paper is organized as follows. In Section 2,
we review related works. In Section 3, we experimentally
and analytically investigate whether the existing shallow
GNNs can preserve graph structures well in practice. Our
proposed method is introduced in Section 4, and experi-
mental results are reported in Section 5. Finally, we con-
clude our work in Section 6.

2 RELATED WORK

We briefly review related works of GNNs and refer readers
to [12], [13], [14] for comprehensive surveys.

The earliest GNNs adopted recursive definitions of node
states [15], [16] or a contextual realization [17].More recently,
Spectral GCNs [18] defined graph convolutions using graph
signal processing [19]. ChebNet [20] and GCN [9] approxi-
mated the spectral graph convolution filters using aK-order
Chebyshev polynomial and the first-order polynomial func-
tion, respectively. Duvenaud et al. [21] also considered the
first-order neighborhood. MPNNs [1], GraphSAGE [22],
MoNet [23] unified these methods using a “message-
passing” framework, i.e., nodes aggregate information from
neighborhoods as messages. Later studies such as GAT [24],
JK-Nets [2], GIN [25], and GraphNets [26] usually follow
these frameworks asmore advanced variants.

To understand the effectiveness of GNNs, Li et al. [7]
showed that GNNs are a special form of Laplacian smooth-
ing. Hou et al. [27] further proposed a metric to measure the
smoothness of node features and node labels. Wu et al. [11]
showed that the existing GNNs are equivalent to a fixed
low-pass filter of graph signals and proposed an extremely
simplified GNN by removing all the non-linearities. Mae-
hara [10] took a similar idea and showed that adding an
extra Multi-Layer Perceptron (MLP) layer can further
increase the non-linear manifold learning capability of
GNNs. Kipf and Welling [9], Zhang et al. [28], Xu et al. [25],
Morris et al. [29], and Maron et al. [30] considered the con-
nection between GNNs and the Weisfeiler-Lehman (WL)
kernel for graph isomorphism tests. Dehmamy et al. [4]
showed that GNNs with an infinite number of layers can
preserve graph moments of any order and Loukas [6] estab-
lished the lower bound for message-passing GNNs to calcu-
late certain graph problems. However, whether shallow
GNNs can preserve graph structures well in practice
remains an open problem. P-GNN [31] proposed to pre-
serve the position information of nodes by randomly select-
ing anchor nodes. However, since P-GNN only considers
relative positions between nodes, it can only handle tasks
for a pair of nodes such as link prediction and pairwise
node classification, but not tasks for single nodes such as
semi-supervised node classification or tasks for the whole
graph such as graph classification.

How to design graph pooling methods while considering
graph structures has also been studied [32], [33], [34]. In
principle, our method can work jointly with them for
graph-level tasks. Besides, there are recent attempts in
increasing the depth of GNNs [35], [36], [37], [38], [39],
which is also orthogonal to the study of this paper.

3 HOW WELL CAN SHALLOW GNNS PRESERVE

GRAPH STRUCTURES?

In this section, we investigate whether shallow GNNs can
preserve graph structures well in practice. We first report
our observations from an empirical study. Then we obtain
some insights into the findings from a dimensionality
reduction perspective.

3.1 An Empirical Study

To manifest the capability of shallow GNNs in structure-
driven and feature-driven tasks, we first conduct some
experiments on synthetic datasets.

1. The source codes are available at https://github.com/ZW-
ZHANG/EigenGNN.
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Datasets Generation and Methods in Comparison. We gener-
ate synthetic datasets with two components: graph struc-
tures and node features. For graph structures, we partition
nodes into l ðl > 0Þ balanced communities and generate
edges using the Stochastic Blockmodel [40], a representative
method in generating community graphs. The nodes within
the same community have a high probability of forming
edges and those in different communities have a low proba-
bility of forming edges. We use the id of the community (a
positive integer between 1 and l) that a node belongs to as
the structure-driven label cstruc of the node.

For node features, we randomly divide nodes into l bal-
anced groups. We generate a random vector for each group,
called the group vector. The features of a node are generated
following a Gaussian distribution with the mean being the
group vector of the group that the node belongs to. In this
way, nodes within the same group share similar features.
The group id (also a positive integer between 1 and l) is
used as the feature-driven label cfeat of the node.

The final node label follows a Bernoulli distribution: c ¼
cstruc with probability g and c ¼ cfeat with probability 1� g,
where 0 � g � 1 is a parameter controlling the degree to
which the node label prediction task is structure- or feature-
driven. We call all the nodes carrying the same label as a
class. Among all the nodes in class i ð1 � i � lÞ, some are
assigned the label due to the structure and the others are
assigned the label due to and are manifested by the features.
As two extremes, when g ¼ 1, the node label prediction task
is completely structure-driven and, when g ¼ 0, the task is
completely feature-driven. The larger the value of g, the
task is more structure-driven and less feature-driven. More
details about the synthetic datasets can be found in Appen-
dix B.1, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TKDE.2021.3112746. We compare three different methods:

� GCNXfeature: this is GCN [9] taking features as
inputs. Parameter X indicates the number of layers
in the GCN and we test with 1, 2, 3, and 5 layers.

� MLPfeature: we use a two-layer Multi-Layer Percep-
tron on node features [9], i.e., a neural network with
two fully connected layers. MLPfeature does not learn
any graph structure.

� DeepWalk [41]: a network embedding method to
learn node representations and preserve graph struc-
tures. No node feature is used. We add a fully con-
nected layer and a softmax layer on the learned
embedding vectors for classification.

More experimental settings are provided in Appendix
B.1, available in the online supplemental material, Note that
we only adopt GCN, which is one of the most representative
and widely-adopted GNN variants, in this empirical study
as an illustration, while more GNNs are adopted and com-
pared in the experiments (Section 5). Please also ignore the
curves of Eigen-GCN in Figs. 1a and 1b, which will be dis-
cussed later in Section 5.2.1.

Observations. First, we consider the extreme case where
only graph structures are useful in the label prediction, i.e.,
g ¼ 1. In this case, to perform well, a model has to learn suf-
ficient information about graph structures. Fig. 1a shows
the results. We have the following findings.

� The accuracy of MLPfeature is about 10%. Since there
are 10 balanced classes, this accuracy is roughly the
same as random guessing. This verifies that node
features indeed are not useful here.

� GCNs outperform MLPfeature, indicating that the
existing GCNs can extract and exploit some informa-
tion from the graph structures. These findings are
consistent with the literature [9].

� Increasing the number of hidden layers in GCNs
from 1 to 3 improves the accuracy. This verifies that
deeper GCNs have a better capability in preserving
graph structures. However, when GCNs have more
layers, i.e., GCN5feature, the performance tends to sat-
urate or even drop (though residual connections are
added), showing that training deep GCNs has
unsolved practical challenges. The results are consis-
tent with the literature [42].

� DeepWalk outperforms all the existing GCNs. This
illustrates the weakness of GCNs in preserving graph
structures. DeepWalk conducts random walks and
takes the skip-gram model [43] to explicitly preserve
graph structures. GCNs only utilize graph structures in
aggregating node neighborhoods. The insufficiency of
preserving graph structures in GCNs explains the infe-
rior performance of GCNs in structure-driven tasks.

Next, we vary g to mimic different kinds of tasks. Recall
that the larger g, the more structure-driven a task, and vice
versa. The results are shown in Fig. 1b. We have the follow-
ing observations.

� When g approaches 1, the results are consistent with
those in Fig. 1a. DeepWalk preserves graph struc-
tures better than GCNs. MLPfeature gets the worst
results since it does not use any graph structural
information.

� When g approaches 0, i.e., the task is heavily feature-
driven, MLPfeature achieves the best results. GCNs

Fig. 1. The experimental results on synthetic datasets (a) in a completely
structure-driven task, i.e., g ¼ 1, (b) when varying g between 0 and 1.
Best viewed in color.
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achieve inferior performance as they are misled to
some extent by graph structures. DeepWalk performs
poorly, the performance being similar to random
guess, since it does not utilize any feature information.

� No existing method can perform well with respect to
various g values. This indicates that the existing
models cannot preserve features and structures well
simultaneously.

In summary, the experimental results on synthetic data-
sets illustrate that the existing shallow GNNs cannot pre-
serve graph structures well in practice. Indeed, no existing
method can be consistently competent in both structure-
and feature-driven tasks. To better understand this phe-
nomenon, we provide an analytical analysis using
dimensionality reduction.

3.2 GNNs as Dimensionality Reduction

Consider a graph G ¼ ðV; E;XÞ, where V ¼ v1; . . . ; vNf g is a
set of N nodes, E � V � V is a set of M edges, and X 2 RN�f

is an optional node feature matrix where f is the number of
features. Denote by A 2 RN�N the adjacency matrix, and by
Ai;:, A:;j, and Ai;j, respectively, the ith row, the jth column
and an element in the matrix. We assume connected and
undirected graphs, i.e., Ai;j ¼ Aj;i; 1 � i; j � N . We use bold
uppercases (e.g., Z) and bold lowercases (e.g., z) to denote
matrices and vectors, respectively. Functions are marked by
curlicue, e.g., Fð�Þ. We denote a non-linear activation func-
tion such as sigmoid or ReLU as sð�Þ.

Our analysis starts with the observation that many exist-
ing GNNs can be unified into the following framework.
Denote by HðlÞ 2 RN�dl the representations of the nodes in
the lth hidden layer, where dl is the dimensionality of layer l
and Hð0Þ ¼ X are the input features, by WðlÞ 2 Rdl�dlþ1 the
parameters, and by FðAÞ 2 RN�N a function on the graph
structure. The lth layer in a GNN is formulated as

HðlÞ ¼ sðF Að ÞHðl�1ÞWðl�1ÞÞ: (1)

For example, a well-known GNN variant, GCN [9]
adopts the following function:

F Að Þ ¼ ~D�1
2 ~A ~D�1

2; (2)

where ~A ¼ Aþ IN , IN is the N �N identity matrix, and
~Di;i ¼

P
j
~Ai;j is the diagonal degree matrix. We list other

five well-known GNNs following this framework such as

DCNN [45] and PPNP [3], and their corresponding F Að Þ
in Table 1.

Denote by F ¼ F Að Þ. F encodes the raw structure infor-
mation of the graph. For example, Eq. (2) shows that

Fi;j ¼ ð ~Di;i
~Dj;jÞ�

1
2 ~Ai;j: (3)

That is, Fi;: is a normalized adjacent vector of node vi, encod-
ing the second-order proximity between nodes [47]. In
DCNN and PPNP, F encodes the transition probability
between nodes. Eq. (1) can be interpreted as a three-step
dimensionality reduction process by executing the calcula-
tion from left to right:

� Step 1: F0 ¼ FHðlÞ, i.e., projecting F 2 RN�N into a
subspace spanned by HðlÞ 2 RN�dl to obtain a low-
dimensional representation F0 2 RN�dl .

� Step 2: F0 is further transformed by a linear mapping
WðlÞ 2 Rdl�dlþ1 followed by a non-linear function sð�Þ,
i.e., Hðlþ1Þ ¼ sðF0WðlÞÞ 2 RN�dlþ1 as refined low-
dimensional representations.

� Step 3: repeat the above two steps using Hðlþ1Þ as the
new base in Step 1.

Remark 1. GNNs can be regarded as a (non-linear)
dimensionality reduction procedure with each layer per-
forming one dimensionality reduction process. The node
features provide the initial bases for the dimensionality
reduction.

Now we can understand the inherent difficulty in the
existing shallow GNNs to preserve graph structures. Specif-
ically, the number of iterations in the dimensionality reduc-
tion is determined by the number of layers. Since most
existing GNNs in practice are shallow, the initial bases play
crucial roles and provide important inductive biases for
GNNs. If the initial bases are solely determined by node fea-
tures as in the existing GNNs, the resulted models are fea-
ture-centric and cannot well preserve graph structures.

In addition, the existing GNNs are struggling to handle
the situations when no node feature is available. A com-
monly used trick is to use a one-hot encoding of node
IDs [9], [48], i.e., X ¼ IN . However, using a one-hot encoding
will dramatically increase the number of parameters and
make the model unable to retain permutation-equivar-
iance [48]. Another heuristic method is to use node degrees
as node features [25], but it can only encode limited graph
structure information.

4 EIGEN-GNN

Can we remedy the existing shallow GNNs in a principled
way so that they can gain a strong capability of preserving
graph structure information?

4.1 The Model

As analyzed in Section 3.2, the main reason that the existing
shallow GNNs fail to preserve graph structures well is that
the initial dimensionality reduction bases, Hð0Þ ¼ X, are
completely biased to features only and do not contain any
structure information. To fix the problem, we need to find a
suitable space where useful graph structure information

TABLE 1
GNN Methods Following Eq. (1) and Their Corresponding

Graph Structure Functions

Method F Að Þ
GCN [9] ~D�1

2 ~A ~D�1
2

SGC [11] ~D�1
2 ~A ~D�1

2

DCNN [45] ðD�1AÞK
DGCN [44] D

�1
2

P APD
�1
2

P

PPNP [3] aðIN � ð1� aÞ ~D�1
2 ~A ~D�1

2Þ�1

MixHop [46] ½ ~D�1
2 ~A ~D�1

2; . . . ; ð ~D�1
2 ~A ~D�1

2Þj�

AP is the Positive Pointwise Mutual Information (PPMI) matrix [44].
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can be preserved. It is well known in spectral graph the-
ory [49] that the eigenspace of a graph provides informative
low-dimensional spaces regarding graph structures. For
example, spectral clustering [50] adopts the eigenvectors
associated with the top-d smallest eigenvalues of the Lapla-
cian matrix for node clustering, and network embedding
adopts the eigenvectors associated with the top-d largest
absolute eigenvectors of a polynomial function of the adja-
cency matrix for unsupervised node representation learn-
ing [51]. Inspired by those successes, our idea is to integrate
the eigenspace of graph structures with GNNs by expand-
ing the initial dimensionality reduction bases.

Consider a matrix GðAÞ 2 RN�N that encodes fruitful
graph structure information. We aim to integrate the eigen-
space of GðAÞ into GNNs. In this paper, we reuse the
symmetrically normalized adjacency matrix in Eq. (2) as the
graph structure matrix, i.e., GðAÞ ¼ ~D�1

2 ~A ~D�1
2 since this

matrix is widely used in GNNs, but our method can be eas-
ily generalized to other matrices, such as the Laplacian
matrix2 or the transition matrix.

To keep it simple and general, we expand the initial
dimensionality reduction bases by directly concatenating
the eigenvectors of GðAÞwith node features

Hð0Þ ¼ ½X; f Qð Þ�; (4)

where X is the feature matrix,Q 2 RN�d are the eigenvectors
corresponding to the top-d largest absolute eigenvalues of
GðAÞ, fð�Þ is a simple function such as normalization or
identity mapping, and �; �½ � is the concatenation operator.
Mathematically, Eq. (4) provides (potentially non-orthogo-
nal) bases for the union space of the feature space and the
eigenspace, and thus integrates these two spaces. In this
paper, we have focused on concatenation because it is the
most straight-forward mechanism to fuse the node feature
space and the eigenspace, and we leave exploring more
advanced methods, e.g., using gating or attention mecha-
nism, as future works.

Rather than being a new GNN architecture, our pro-
posed Eigen-GNN can be used as a plug-in module to
enhance the capability of many existing GNNs in preserv-
ing graph structures. As both node features and graph
structure information are captured in the initial dimension-
ality reduction bases, Eigen-GNN is flexible and adaptive in
handling both structure-driven and feature-driven tasks
since the dimensionality reduction process can freely
explore these two spaces. Moreover, since the eigenspace is
independent of node attributes, Eigen-GNN can easily han-
dle featureless graphs by only using the eigenspace, as
opposed to the existing GNNs that can only use heuristics
such as node IDs or degrees.

Moreover, since Eigen-GNN only provides the initial
dimensionality reduction bases, it can work jointly with dif-
ferent GNNs, including those designed for signed or multi-
relational graphs, like propagating between positive/nega-
tive edges [52] and learning different weights for different

edge types [53]. When generalizing to bipartite or directed
graphs, we can simply replace the eigenvectors in Eq. (4) by
singular vectors [54]. Besides, though we motivate our
method using the framework in Eq. (1), our method is gen-
eral enough to work with GNNs beyond this framework.

4.2 Several Desirable Properties of Eigen-GNN

We show that Eigen-GNN has several desired properties.
When applied to graph-level tasks such as graph classifi-

cation [5], [55], a key property of the existing GNNs is per-
mutation-equivariance, i.e., the node representations are
equivariant if node IDs are permutated. Mathematically,
permutation-equivariance reflects one basic symmetric
group of graph structures. However, heuristics mentioned
above such as one-hot IDs or using network embedding
methods like Deepwalk cannot maintain this key property
(unless we enumerate all possible permutations, which is
exponential w.r.t. the number of nodes and not feasible for
graphs with more than a dozen nodes; see [48], [56], [57]).
To the contrary, we prove that one Eigen-GNN variant can
maintain permutation-equivariance as long as the top-d
eigenvalues of GðAÞ are unique.
Theorem 1. For two graphs G ¼ ðV; E;XÞ and G0 ¼ ðV0; E0;X0Þ,

we assume the top-d eigenvalues of GðAÞ are unique forG andG0

and use fðxÞ ¼ xj j in Eq. (4). Then, Eigen-GNN is permutation-
equivariant if the base GNN follows Eq. (1). Specifically, we
denote by HðlÞ;UðlÞ; 0 � l � L, respectively, the representations
of V and V0 in the lth hidden layer of the Eigen-GNN. If there
exists a bijective mapping B : V ! V0 so that Eði; jÞ ¼ E0ðBðiÞ;
BðjÞÞ;Xi;: ¼ X0

BðiÞ;:; 81 � i; j � N , then, H
ðlÞ
i;: ¼ U

ðlÞ
BðiÞ;:; 81 �

i � N;80 � l � L.

The proof is given in Appendix C.1, available in the
online supplemental material. By being able to maintain
permutation-equivariance, Eigen-GNN can be applied to
graph-level tasks.3 We further demonstrate this advantage
empirically in Section 5.3. Though we only prove the case
for graphs with unique top eigenvalues, our experiments in
Section 5.3 adopt regular graphs, which contain non-unique
top eigenvalues. Empirical results show that Eigen-GNN
works reasonably well in those cases. We leave theoretical
analysis for non-unique eigenvalues as future works.

In addition, Eigen-GNN is scalable to large graphs since
we only calculate the eigenvectors corresponding to the
largest absolute eigenvalues. We have the following result.

Remark 2. The time complexity of calculating the eigen-
space in Eq. (4) is O T MGdþNd2ð Þð Þ, where MG is the
number of non-zero elements in GðAÞ, N is the number of
nodes, d is the preset dimensionality, and T is the number
of iterations (a constant).

Proof. The result is due to well-known iterative algorithms
for calculating the eigenspace in linear algebra such as
the Arnoldi method [59]. tu

2. Recall that the eigenspace of the normalized adjacency matrix and
the normalized Laplacian matrix encode similar information. Specifi-
cally, if x is an eigenvector of ~D�1

2 ~A ~D�1
2 with eigenvalue �, x is also an

eigenvector of ~Lsym ¼ ~D�1
2ð ~D� ~AÞ ~D�1

2 with eigenvalue 1� �, and vice
versa.

3. Notice that we only adopt the permutation-equivariant Eigen-
GNN variant, i.e., fðxÞ ¼ xj j, for graph-level tasks since permutation-
equivariance is strongly required. For node- or edge-level tasks, it is
shown in [31], [58] that permutation-equivariance may not be a desir-
able property, thus we adopt normal Eigen-GNNs, e.g., fðxÞ ¼ x.
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The result shows that the time complexity mainly
depends on the number of non-zero elements in the graph
structure matrix GðAÞ. By setting GðAÞ as a sparse matrix,
e.g., the normalized adjacency matrix, we have MG 	 M. In
such a case, the time complexity of calculating the eigen-
space is linear with respect to the number of nodes and that
of edges in the graph. Since this time complexity is on the
same scale as the existing GNNs, Eigen-GNN does not incur
any extra cost in scalability. We empirically verify the result
in Section 5.5 by showing that we can handle graphs with
tens of thousands of nodes and millions of edges in a few
seconds using a normal server. Notice that unlike spectral
GCNs [18], we only utilize the eigenvectors associated with
the top eigenvalues rather than the full spectrum, so that
our algorithm is much more scalable.

Finally, we show an interesting connection between our
method and Simple Graph Convolution (SGC) [11], a sim-
plified GNN variant without non-linearities.

Theorem 2. For a graph that is not bipartite, an SGC with an
infinite number of layers converges to Eigen-GNN with no hid-
den layer and the eigenspace dimensionality d ¼ 1.

The proof is given in Appendix C.2, available in the
online supplemental material. In fact, we can generalize this
result to GCNs with ReLU activation functions under mild
assumptions [8]. The theorem implies that, instead of inte-
grating graph structures gradually in each layer as an SGC,
Eigen-GNN can directly provide the final graph structure
information used by SGC using a “short-cut” by the first
eigenspace and thus better preserve graph structures with-
out needing to increase depths.

5 EXPERIMENTAL RESULTS

Since Eigen-GNN is a general plug-in to enhance existing
GNNs rather than a new architecture, we conduct a series
of experiments to answer the following three questions.

� Q1: Can Eigen-GNN improve GNNs in structure-
driven tasks? Does Eigen-GNN impair feature-
driven tasks?

� Q2: Can Eigen-GNN be easily plugged into various
GNNmodels?

� Q3: Can we empirically verify the desirable proper-
ties of Eigen-GNN in applications?

5.1 Baselines and Experimental Settings

We compare the following three methods:

� GNNfeat: we report the original results of the GNN
model with node features as inputs.

� GNNfeat+DW: we run DeepWalk [41] on graph struc-
tures and concatenate the generated embedding vec-
tors with node features as inputs to GNNs. This is a
heuristic approach to enhance GNNs in preserving
graph structures [60].

� Eigen-GNNfeat+struc: our proposed method, i.e., we
concatenate the eigenspace with node features as
inputs.

We also include five methods without using node
features.

� GNNone-hot: we use a one-hot encoding of node ID as
inputs to GNNs [48].

� GNNdegree: we use a one-hot encoding of node
degrees as inputs to GNNs, which is proven useful
in chemistry graphs [25].

� GNNrandom: we generate random features following a
Gaussian distribution as inputs to GNNs [61].

� GNNDW: we use the embedding vectors of Deep-
Walk as inputs to GNNs.

� Eigen-GNNstruc: we adopt the eigenspace as the
inputs.

Although Eigen-GNN can be generally plugged into
many different GNNs, it is infeasible to compare every
possible GNN architecture due to the vast and fast-devel-
oping literature. Instead, we adopt the most prominent
GNNs for the tasks as showcases (the exact model will be
given in each subsection). We further clarify the adopted
architecture by replacing the “GNN” in method names
with the exact model name, e.g., Eigen-GCN if we use
GCN and Eigen-GAT if we use GAT. For hyper-parame-
ters, we search the dimensionality d of the eigenspace
from 32; 64; 128; 256f g. We repeat all experiments 10 times
and report the average results and standard deviation of
different runs. Additional hyper-parameters and details
for reproducibility can be found in Appendix B, available
in the online supplemental material.

5.2 Node Classification

5.2.1 Revisiting the Empirical Study in Section 3.1

Section 3.1 presents an empirical study using synthetic data-
sets. Now let us examine the performance of Eigen-GCN
(we use GCN as the base GNN architecture) in Figs. 1a
and 1b.

� When the task is structure-driven (i.e., g approaches
1), Eigen-GCN achieves the best performance. This
shows that our plugged-in module can empower
GCNs to better capture graph structure information.

� Eigen-GCN achieves the most stable performance
with respect to g varying between 0 and 1. This dem-
onstrates that Eigen-GCN can handle both feature-
driven and structure-driven tasks. Eigen-GCN con-
sistently outperforms the existing GCNs when g 

0:5 and retains comparable results when g < 0:5,
showing that Eigen-GCN is robust and thus a reli-
able choice even when the type of the tasks is
unknown.

� When the task is feature-driven (i.e., g approaches 0),
although Eigen-GCN outperforms GCN, MLPfeature

reports better results, showing that a graph-based
method may not be preferred in those cases after all.

5.2.2 Results on Real-World Datasets

We further experiment on 7 real-world social networks [62]:
Harvard, Columbia, Stanford, Yale, Cornell, Dartmouth,
and UPenn [62].4 These are Facebook social networks for
different colleges/universities. Edges represent intra-school
links of users and node attributes correspond to user

4. https://archive.org/details/oxford-2005-facebook-matrix
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profiles such as gender, major, dorm/house, etc. We use the
class year as ground-truth labels. We preprocess the data-
sets by using a one-hot encoding of categorical node fea-
tures and removing node features/labels which occur less
than 0.1%/1% among all the nodes.

The statistics of the datasets are summarized in Table 3.
For the Facebook social networks, we use 20 nodes per class
for training, 30 nodes per class for validation, and the rest
for testing. For the other four benchmark datasets, we adopt
the fixed training/validation/testing split that came with
the datasets. Similar results are observed in random splits.

For the base GNN model, we adopt three widely used
architectures: GCN [9], GAT [24], and GraphSAGE [22]. We
report the results of using GCN in Table 2. The results of
using GAT and GraphSAGE show a similar trend and are
provided in Appendix A.1, available in the online supple-
mental material, due to the page limit. We also omit the
results of GNNone-hot since it runs out of memory on most of
the datasets. We make the following observations.

� Eigen-GCNfeat+struc reports the best results on all
the datasets and the improvements of Eigen�
GCNfeat+struc compared to Eigen-GCNfeat are more
than 10% in terms of the classification accuracy on 4
datasets (Harvard, Yale, Dartmouth, and UPenn).
The results clearly demonstrate that graph structures
are crucial in this task and our proposed method can
greatly enhance the existing GCNs in preserving
graph structures.

� When node features are unavailable, Eigen-GCNstruc

also consistently outperforms the other methods.
This demonstrates that Eigen-GCN can extract fruit-
ful information from the graph structures and han-
dle featureless graphs.

� GCNDW and GCNfeat+DW achieve the second-best
results. This heuristic method works reasonably
well, but is still inferior to Eigen-GCN.

5.2.3 Results on Benchmarks

We also experiment on four benchmark datasets commonly
used in GNNs.

� Cora, Citeseer,Pubmed [63]:5 citation graphs where
nodes represent papers and edges represent citations
between papers. The datasets also contain bag-of-

words features and ground-truth topics as labels of
the papers.

� Reddit [22]:6 an online discussion forum for users
where nodes are posts and two nodes are connected
if they are commented by the same user. Each post
contains a low-dimensional word vector as features.
The task is to predict which community the posts
belong to.

The results are shown in Table 4. For simplicity, we only
adopt GCN [9] as the base GNN model. We make the fol-
lowing observations.

� Similar to Section 5.2.2, when no node feature is
available, Eigen-GCNstruc reports the best results,
demonstrating that Eigen-GCN can better preserve
graph structures.

� When features are available, GCNfeat performs the
best on three citation graphs and highly competently
on Reddit, showing that features are dominant on
these benchmark datasets. The results are consistent
with the literature [10], [11], which show that fea-
tures contain the “true signals” for those node classi-
fication tasks.

� Eigen-GCNfeat+struc has comparable performance
with GCNfeat on the three citations graphs and is
even better than GCNfeat on Reddit. These results
show that expanding the initial bases with the eigen-
space does not impair GNNs in feature-driven tasks.
Thus, Eigen-GNN can be adopted as a default

TABLE 3
Statistics of the Datasets for Node Classification

Dataset Type #Nodes #Edges #Classes #Features

Harvard Social 15,126 1,649,234 10 136
Columbia Social 11,770 888,666 7 197
Stanford Social 11,621 1,136,660 8 225
Yale Social 8,578 810,900 8 146
Cornell Social 18,660 1,581,554 7 253
Dartmouth Social 7,694 608,152 9 178
UPenn Social 14,916 1,373,002 7 204
Cora Citation 2,708 5,429 7 1,433
Citeseer Citation 3,327 4,732 6 3,703
Pubmed Citation 19,717 44,338 3 500
Reddit Social 232,965 11,606,919 41 602

TABLE 2
The Accuracy (%) of Node Classification on 7 Social Networks Using GCN as the Base Model (Results Using GATand GraphSAGE

as the Base Model Show Similar Trends and are Provided in Appendix A.1, available in the online supplemental material)

Data Method Harvard Columbia Stanford Yale Cornell Dartmouth UPenn

A,Y GCNrandom 74:6� 0:5 63:6� 1:6 68:2� 1:5 73:6� 1:2 54:5� 1:7 73:1� 1:6 63:0� 1:2
GCNdegree 74:4� 2:0 63:8� 2:3 67:8� 1:6 76:5� 2:0 56:3� 1:6 73:3� 1:4 65:4� 1:8
GCNDW 82:5� 1:0 76:0� 1:3 76:6� 1:3 82:6� 1:0 71:0� 2:0 79:3� 1:7 77:1� 1:4
Eigen-GCNstruc 82:7� 1:2 76:0� 1:9 78:9� 1:3 84:2� 1:4 71:9� 1:7 82:1� 1:2 78:5� 1:4

A,X,Y GCNfeat 70:6� 1:3 74:8� 1:7 71:3� 1:6 71:2� 1:9 67:0� 1:9 73:1� 1:6 71:2� 2:0
GCNfeat+DW 83:1� 0:7 77:6� 1:3 78:3� 1:4 83:5� 1:5 73:2� 2:2 80:8� 1:3 78:5� 1:2
Eigen-GCNfeat+struc 84:6� 1:4 78:6� 1:1 79:7� 1:2 85:1� 1:3 74:8� 1:8 83:6� 1:3 81:3� 0:9

The best results with and without node features, respectively, are in bold. A, X, Y stands for graph structures, node features, and node labels, respectively.

5. https://github.com/tkipf/gcn 6. http://snap.stanford.edu/graphsage/
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module if we are not sure whether a task is feature-
driven or structure-driven.

5.2.4 Summary

The experimental results demonstrate that Eigen-GNN
achieves superior performance on structure-driven tasks
and does not affect the performance when node features are
dominant. Moreover, Eigen-GNN can handle featureless
graphs well.

5.3 Graph Isomorphism Tests

We further conduct experiments on Circulant Skip Links
(CSL) graphs [48], a well-known dataset for graph isomor-
phism tests, i.e., distinguishing whether two graphs are
structurally equivalent. We briefly introduce CSL graphs as
follows. A basic CSL graph GN;R is an undirected graph,
where 1; . . . ; Nf g is the set of N nodes and the edges consist
of a cycle and a set of skip links. We denote A as the adja-
cency matrix. The cycle is formulated as

Aj;jþ1 ¼ Ajþ1;j ¼ 1; 81 � j < N (5)

A1;N ¼ AN;1 ¼ 1: (6)

The skip links, controlled by an interval parameter R satis-
fying 1 < R < N , are defined as

Ai;j ¼ Aj;i ¼ 1; if j� ij j ¼ R or N �R mod N; 81 � i; j � N:

(7)

Fig. 3 shows examples of G13;2 and G13;3, i.e., two CSL
graphs with 13 nodes and with skip links of the interval 2
and 3, respectively. Intuitively, basic CSL graphs GN;R are 4-
regular graphs (i.e., the degree of all nodes is 4) by connect-
ing every “adjacent” node pair and every node pair that is
“R-hops” away. The full CSL graph set includes the basic

CSL graphs GN;R and all their permutations, i.e.,

GN ¼ SN GN;R

� �
; 81 < R < N; 8SN

� �
; (8)

where SNð�Þ is any permutation ofN node IDs.
CSL graphs are widely adopted for graph isomorphism

tests since their structures are highly regular and similar,
and all nodes have the same degree. For example, it is
known that G41 is composed of 10 isomorphism classes

G41 ¼ S41 G41;R

� �jR 2 2; 3; 4; 5; 6; 9; 11; 12; 13; 16f g� �
:

Although there exist known mathematical approaches to
solve graph isomorphism tests for CSL graphs [64], it still
poses great challenges for machine learning models, includ-
ing the existing GNNs, to distinguish them if no prior
knowledge is used [48], [65].

Specifically, following the experimental setting in [48],
we consider the aforementioned CSL graphs with 41 nodes
and 10 isomorphism classes. Using the isomorphism classes
as labels for graphs, the graph isomorphism test can be
transformed into a graph classification problem. For each
isomorphism class, i.e., a graph label, we randomly generate
60 isomorphic CSL graphs belonging to that class. As a
result, the dataset contains 600 graphs with 10 balanced
classes. Following [48], we adopt a 5-fold cross-validation.

We adopt GIN [25] as the baseline GNN model, which is
proven to be one of the most powerful message-passing
GNN models in graph isomorphism tests.7 Since this data-
set does not contain node features, we only report in Fig. 2
the results of the five methods that do not use node features.
We make the following observations.

All the methods except for Eigen-GIN report an accuracy
of about 10%, roughly the same as that of random guessing

TABLE 4
The Results of Node Classification Accuracy (%) on Benchmark Datasets

Data Method Cora Citeseer Pubmed Reddit

A,Y GCNrandom 23:5� 1:6 21:2� 1:1 32:6� 1:0 86:1� 0:3
GCNdegree 33:5� 2:4 30:2� 0:9 34:9� 1:3 83:0� 0:4
GCNone-hot 66:3� 0:6 45:2� 1:1 64:3� 0:9 Out of memory
GCNDW 70:6� 1:2 47:7� 1:1 69:3� 1:2 94:3� 0:1
Eigen-GCNstruc 71:0� 0:5 49:3� 0:6 73:8� 0:3 94:3� 0:0

A,X,Y GCNfeat 81:5� 0:4 70:6� 0:8 78:6� 0:4 96:4� 0:0
GCNfeat+DW 76:8� 0:5 61:8� 0:6 76:3� 0:5 96:6� 0:1
Eigen-GCNfeat+struc 78:9� 0:7 66:5� 0:3 78:6� 0:1 96:6� 0:1

The best results with and without node features, respectively, are in bold. A, X, Y stands for graph structures, node features, and node labels, respectively.

Fig. 3. An example of CSL graphs G13;2 and G13;3. Though these
two graphs are non-isomorphism, their structures are extremely similar
that the existing GNNs fail to distinguish them. The image is adapted
from [48].

Fig. 2. The results of graph isomorphism tests on circulant skip link
graphs.

7. We do not adopt a more recent approach RP-GIN [48] because of
its high time complexity.
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since the dataset has 10 balanced classes. These results are
consistent with the theoretical findings that the original
GIN (as well as other message-passing GNNs) cannot dis-
tinguish CSL graphs [48]. The major reason is that
GINrandom, GINone-hot, and GINDW do not satisfy permuta-
tion-equivariance, a necessary requirement for graph iso-
morphism tests, and GINdegree cannot distinguish graph
structures if nodes have the same degree.

Eigen-GIN reports a remarkably high accuracy. It can
recognize CSL graphs well due to two reasons. First, Eigen-
GIN satisfies permutation-equivariance, as proven in Theo-
rem 1. Second, the eigenspace provides more fruitful struc-
tural information than simple heuristics such as degrees.

We also conduct graph isomorphism tests on random
regular graphs. Specifically, we generate 10 non-isomorphic
4-regular graphs containing 20 nodes as isomorphism clas-
ses. Other experimental settings are kept the same as on
CSL graphs. The results are shown in Fig. 4. As on CSL
graphs, our proposed Eigen-GIN greatly outperforms other
baselines.

5.4 Link Prediction

Link prediction is to predict which pairs of nodes in a graph
are most likely to form edges, which also involves graph
structure information substantially. We adopt eight bench-
mark datasets from [66]:8

� C.elegans: the neural network of the worm C.
elegans.

� E.coli: a pairwise metabolites reaction network in E.
coli.

� NS: a collaboration network between researchers,
where nodes represent authors and edges corre-
spond to co-authorships.

� PB: a graph formed by US political blogs where
edges represent hyperlinks between blogs.

� Power: an electrical grid of the western US, where
edges represent high-voltage transmission lines.

� Router: a router-level Internet connection graph.
� USAir: a graph from US Airlines with nodes repre-

senting airports and edges representing airlines.
� Yeast: a protein-protein interaction network in yeast.
The statistics of the datasets are summarized in Table 6.

Following [66], we randomly split the edges of the graph
into 50%-20%-30% parts, and use them for training, valida-
tion, and testing, respectively. In splitting the datasets, we
maintain that each node has at least one edge in the training

set. The same number of edges are sampled from the non-
existing links (i.e., node pairs that do not have edges) as
negative samples.

We use SEAL [66] as the baseline GNN model, a state-of-
the-art GNN specifically designed for link prediction. The
architecture is kept the same as the original paper.

The results are reported in Table 5. We exclude the five
baselines that do not use node features since SEAL has spe-
cifically designed those features and cannot function with-
out them. We make the following observations.

� Eigen-SEAL reports significantly better results than
the two baselines on four out of the eight datasets
(with the rest four datasets showing no significant
differences). This indicates that graph structures are
important in link prediction tasks. The findings are
consistent with the literature [67].

� Although SEAL is specifically designed for link pre-
diction and Eigen-GNN does not target at any spe-
cific task, Eigen-SEAL reports better performance.
This demonstrates the general effectiveness of Eigen-
GNN.

� SEALfeat+DW fails to improve SEAL on any dataset.9

This shows that DeepWalk cannot enhance SEAL in
link prediction. The results are consistent with the
paper [66].

5.5 Scalability and Parameter Sensitivity

5.5.1 Scalability

Since Eigen-GNN conducts the same calculation as base
GNN models in all the hidden layers, we only report the
runtime of calculating the eigenspace, which is the extra
cost caused by Eigen-GNN. Specifically, we generate ran-
dom graphs of different sizes using the Erdos Renyi
model [68]. Fig. 5a shows the runtime when fixing either the
number of nodes to 10 thousand or fixing the number of
edges to 1 million, and varying the other factor. The time of
calculating the eigenspace increases roughly linearly with
respect to the number of nodes and the number of edges in
graphs. In addition, even for a large graph with 50 thousand
nodes and 1 million edges, the running time is no more than
6 seconds on a single server. The results show that Eigen-
GNN is scalable to large graphs.

5.5.2 Parameter Sensitivity

Eigen-GNN has only one parameter, the dimensionality d
of the eigenspace. To test the parameter sensitivity, we
follow the same experimental setting in Section 5.2.2 by
adopting GCN [9] as the base GNN model and vary d in
8; 16; 32; 64; 128f g. Fig. 5b shows the node classification
results on the three citations graphs without using node fea-
tures. The results of the other tasks on the corresponding
datasets share similar patterns. When the dimensionality d
increases, the accuracy of the model increases at first but
tends to saturate or even decreases if d becomes too large. A
plausible reason is that, if the dimensionality of the

Fig. 4. The results of graph isomorphism tests on random regular
graphs.

8. https://github.com/muhanzhang/SEAL

9. Though SEALfeat+DW seems to perform better on E.coli, NS, and
PB, the improvement is not statistically significant under 0.05 paired t-
test.
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eigenspace is too small, the model does not have enough
capacities to learn useful graph structures. If the eigenspace
grows too large, noises are likely to be introduced.

5.6 Summary

In summary, the experimental results show that Eigen-
GNN works well with a number of GNN models for differ-
ent tasks, namely GCN [9], GAT [24], GraphSAGE [22] for
node classification, GIN [25] for graph isomorphism tests,
and SEAL [66] for link prediction. These results well dem-
onstrate the general applicability of Eigen-GNN in enhanc-
ing various GNNs in preserving graph structures.

6 CONCLUSION

In this paper, we observe that though GNNs with an infi-
nite number of layers can preserve graph structures in
theory, many GNNs in practice are shallow in nature and
do not have a sufficient capability to well preserve graph
structure. Then, motivated by treating GNNs as a type of
dimensionality reduction, we propose Eigen-GNN, a sim-
ple yet general and effective plug-in module that integrates
the eigenspace of graph structures with GNNs. We show
that Eigen-GNN is capable of handling both feature-driven
and structure-driven tasks simultaneously. Our extensive
experiments demonstrate the effectiveness of Eigen-GNN
in a wide spectrum of tasks including node classification,
link prediction, and graph isomorphism tests.
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The Average Precision of Link Prediction (%)
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Gainy þ1:9 þ0:4 þ0:2 þ0:3 þ3:3 þ0:1 0:0 �0:1

The best results are highlighted in bold.
y: Gain is the relative improvement of Eigen-SEAL compared to the better of the other two methods.
�: The improvement of bolded results over non-bolded results is statistically significant at 0.05-level paired t-test.

Fig. 5. Scalability and parameter sensitivity. (a) The running time of
calculating the eigenspace grows linearly with respect to the number
of nodes and the number of edges in the graph, respectively.
(b) The node classification accuracy of Eigen-GNN with different
eigenspace dimensionality.

TABLE 6
Statistics of the Datasets for Link Prediction

Dataset Type #Nodes #Edges Degree

C.elegans Biology 297 4,296 14.5
Ecoli Biology 1,805 29,320 16.2
NS Collaboration 1,589 5,484 3.5
PB Social 1,222 33,428 27.4
Power Industry 4,941 13,188 2.7
Router Internet 5,022 12,516 2.5
USAir Transportation 332 4,252 12.8
Yeast Biology 2,375 23,386 9.9
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