

Disentangled Contrastive Learning on Graphs

Haoyang Li¹, Xin Wang¹, Ziwei Zhang¹, Zehuan Yuan², Hang Li², Wenwu Zhu¹

¹Tsinghua University, ²ByteDance

Graph Structured Data is Ubiquitous

Social Network

Knowledge Graph

Traffic Network

Internet of Things

Information Network

Biology Network

Graph Neural Networks

GNNs generally adopt a neighborhood aggregation paradigm.

 Most famous GNNs are trained end-to-end with task-specific labels, which could be extremely scarce for some graph datasets.

Self-supervised Learning on Graphs

Graph Contrastive Learning

holistic scheme

Disentangled Graph Contrastive Learning

• The formation of a graph is typically driven by *many latent factors*.

- Existing methods characterize graphs as a perceptual whole.
 - The learned representations contain a mixture of entangled factors.
 - They may lead to suboptimal performance and harm the explainability.

Model Framework

Experimental Results

Graph classification performance

					and the second second				
	MUTAG	PTC-MR	PROTEINS	NCI1	IMDB-B	IMDB-M	RDT-B	RDT-M5K	COLLAB
SP	85.2±2.4	58.2 ± 2.4	75.1±0.5	73.0±0.2	55.6±0.2	38.0 ± 0.3	64.1±0.1	39.6±0.2	-
GK	81.7 ± 2.1	57.3±1.4	$71.7 {\pm} 0.6$	62.3 ± 0.3	65.9±1.0	43.9 ± 0.4	77.3±0.2	41.0 ± 0.2	72.8 ± 0.3
WL	80.7±3.0	$58.0 {\pm} 0.5$	72.9 ± 0.6	$80.0 {\pm} 0.5$	72.3 ± 3.4	47.0 ± 0.5	$68.8 {\pm} 0.4$	46.1 ± 0.2	-
DGK	87.4±2.7	60.1 ± 2.6	73.3 ± 0.8	$80.3 {\pm} 0.5$	$67.0 {\pm} 0.6$	44.6 ± 0.5	$78.0 {\pm} 0.4$	41.3 ± 0.2	73.1 ± 0.3
MLG	87.9±1.6	$63.3{\pm}1.5$	76.1 ± 2.0	80.8 ± 1.3	$66.6{\pm}0.3$	$41.2 {\pm} 0.0$	-	-	-
node2vec	72.6±10.2	58.6 ± 8.0	57.5±3.6	54.9±1.6	-	-	-	-	-
sub2vec	61.1±15.8	60.0 ± 6.4	53.0 ± 5.6	52.8 ± 1.5	55.3±1.5	36.7 ± 0.8	71.5 ± 0.4	36.7 ± 0.4	-
graph2vec	83.2±9.3	60.2 ± 6.9	73.3 ± 2.1	73.2 ± 1.8	71.1 ± 0.5	50.4 ± 0.9	$75.8 {\pm} 1.0$	47.9 ± 0.3	-
GVAE	87.7±0.7	61.2 ± 1.8	-	-	70.7 ± 0.7	49.3 ± 0.4	87.1 ± 0.1	52.8 ± 0.2	-
InfoGraph	89.0 ± 1.1	61.7 ± 1.4	74.4 ± 0.3	76.2 ± 1.1	$73.0 {\pm} 0.9$	49.7 ± 0.5	82.5 ± 1.4	53.5 ± 1.0	70.7 ± 1.1
GCC	-	-	-	-	72.0	49.4	89.8	53.7	78.9
MVGRL	89.7±1.1	62.5 ± 1.7	-	-	74.2 ± 0.7	51.2 ± 0.5	84.5 ± 0.6	-	-
GraphCL	86.8±1.3	63.6 ± 1.8	$74.4 {\pm} 0.5$	77.9 ± 0.4	71.1 ± 0.4	50.7 ± 0.4	$89.5 {\pm} 0.8$	56.0 ± 0.3	71.4 ± 1.2
DGCL	92.1±0.2	65.8±1.5	76.4±0.5	$81.9{\pm}0.2$	$75.9 {\pm} 0.7$	$51.9{\pm}0.4$	92.7±0.2	56.1±0.2	$81.2{\pm}0.3$

unsupervised setting

semi-supervised setting

Experimental Results

Feature correlation analysis

Conclusions

- This paper proposes a disentangled graph contrastive learning method.
- This paper proposes a disentangled graph encoder and factorwise contrastive learning approach.
- Extensive experiments demonstrate the superiority of the method.

Thanks!

Haoyang Li, Tsinghua University lihy18@mails.tsinghua.edu.cn

Disentangled Contrastive Learning on Graphs