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Abstract

Recently, self-supervised learning for graph neural networks (GNNs) has attracted
considerable attention because of their notable successes in learning the repre-
sentation of graph-structure data. However, the formation of a real-world graph
typically arises from the highly complex interaction of many latent factors. The
existing self-supervised learning methods for GNNs are inherently holistic and
neglect the entanglement of the latent factors, resulting in the learned representa-
tions suboptimal for downstream tasks and difficult to be interpreted. Learning
disentangled graph representations with self-supervised learning poses great chal-
lenges and remains largely ignored by the existing literature. In this paper, we
introduce the Disentangled Graph Contrastive Learning (DGCL) method, which
is able to learn disentangled graph-level representations with self-supervision. In
particular, we first identify the latent factors of the input graph and derive its fac-
torized representations. Each of the factorized representations describes a latent
and disentangled aspect pertinent to a specific latent factor of the graph. Then
we propose a novel factor-wise discrimination objective in a contrastive learning
manner, which can force the factorized representations to independently reflect the
expressive information from different latent factors. Extensive experiments on both
synthetic and real-world datasets demonstrate the superiority of our method against
several state-of-the-art baselines.

1 Introduction

Graph structured data is ubiquitous in the real world, e.g., social networks, biology networks, traffic
networks, etc. Recently, graph neural networks (GNNs) have become increasingly prevalent in
learning graph representations in a supervised manner, demonstrating their strength in a wide variety
of research fields [1, 2, 3, 4]. GNNs require task-dependent annotated labels to learn effective
representations, which are extremely scarce, or even unavailable in practice, thus motivating the
advent of self-supervised graph representation learning.

Contrastive learning, as a discriminative approach pulling similar samples close and pushing dissimilar
samples far away, has become a dominant strategy in self-supervised graph representation learning [5,
6, 7, 8, 9, 10, 11]. Despite their notable successes, the existing graph contrastive learning methods
generally adopt a holistic scheme, i.e., the learned representations characterize graphs as a perceptual
whole, ignoring the nuances between different aspects of the graph. In fact, the formation of a graph
typically follows a relational process in the real world, driven by many complex latent factors. For
example, in social networks, a social group may have several communities originated from different
relations (e.g., friends, colleagues, etc.) or interests (e.g., sports, games, etc.) [12]. And a molecular
graph may consist of various groups of atoms and bonds representing different functional units [13].
The complex relations among the multiple latent factors bring an urge for disentangling these factors
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in contrastive graph representation learning, which remains unexplored by the existing holistic works.
As a result, the graph representations learned by the existing methods contain a mixture of entangled
factors, harming interpretability and leading to suboptimal performance for predictive tasks involving
whole graph representations.

In this paper, we propose to learn disentangled contrastive graph representation, for the first time.
Although disentangled representation learning, which aims to characterize the various underlying
explanatory factors behind the observed data in different parts of the factorized representations [14,
15], has been demonstrated to be more explainable [12] and generalizable [14], disentangled graph
contrastive learning faces the following two challenges. (1) Tailored graph encoder for disentangled
contrastive learning. The graph encoder should be carefully designed so that it can be sufficiently
expressive to infer the disentangled latent factors in the graph. (2) Tailored discrimination tasks
designed for disentangled graph contrastive learning. Since task-dependent labels are not available in
the self-supervised setting, disentangled graph contrastive learning can only utilize the limited amount
of self-supervision information. This implies that the discrimination tasks should be well-designed
for disentangled contrastive representation learning on graphs.

To tackle these challenges, we propose a novel disentangled graph contrastive learning model (DGCL)
capable of disentangled contrastive learning on graphs. In particular, we first design a disentangled
graph encoder whose key ingredient is a multi-channel message-passing layer. Each channel is
tailored to aggregate features only from one disentangled latent factor. Then a separate readout
operation in each channel summarizes the specific aspect of the graph according to the corresponding
latent factor, so as to produce the disentangled graph representation. Next, we conduct contrastive
learning in each representation subspace characterized by each factor independently instead of in
the whole representation space. This novel factor-wise contrastive approach can ensure that each
disentangled factor of the vectorized representations is sufficiently discriminative only under one
specific aspect of the whole graph. Thus the representations are encouraged to be disentangled and
best characterize the aspect pertinent to a latent factor of the graph. Compared with the existing
methods, our proposed DGCL model encodes a graph with multiple disentangled representations,
making it possible to explore the meaning of each channel, which benefits in more explainability for
producing graph representations.

We conduct extensive experiments on both synthetic graph dataset and empirical well-known graph
benchmarks. The results show that the representations learned from DGCL can achieve substantial
performance gains on the downstream graph classification task compared with various state-of-the-art
baselines.

The contributions of this paper are summarized as follows:

• We propose a disentangled graph contrastive learning model (DGCL), which is able to learn
disentangled graph representation via factor-wise contrastive learning. To the best of our
knowledge, we are the first to study disentangled self-supervised graph representation learning.

• We propose a disentangled graph encoder to capture multiple aspects of graphs through learning
disentangled latent factors on graphs. We further present the factor-wise contrastive learning
approach on tailored discrimination tasks in terms of each latent factor independently.

• We conduct extensive experiments to verify the efficacy of our proposed model for the graph
classification task. The results on several graph classification datasets demonstrate that DGCL
achieves state-of-the-art performance by significantly outperforming the baselines.

We introduce the problem formulation and preliminaries in Section 2. In Section 3, we describe the
details of our proposed method. Section 4 presents the experimental results, including quantitative
and qualitative comparisons. We review the related work in Section 5. Finally, we conclude our work
in Section 6.

2 Problem Formulation and Preliminaries

2.1 Problem Formulation

Let G = {Gi}Ni=1 be a graph dataset with N graphs. The key of most self-supervised graph
representation learning methods, including ours, is to derive a graph encoder f(·), which outputs a
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Figure 1: The framework of DGCL Model. (1) The input graph Gi undergoes graph augmentations
to produce G′i, and both of them are fed into the shared disentangled graph encoder fθ(·). (2) In
the encoder fθ(·), the node features H0 are first aggregated by L message-passing layers and then
taken as the input of a multi-channel message-passing layer. (3) Based on the disentangled graph
representation zi, the factor-wise contrastive learning aims to maximize the agreement under each
latent factor and provide feedback for the encoder to improve the disentanglement. This example
assumes that there are three latent factors, hence the three channels.

d-dimensional representation zi = f(Gi) ∈ Rd for each input graph, such that Z = {zi}Ni=1 best
describes G. In this work, we aim to learn a multi-channel graph encoder fθ(·) with parameters θ, so
that the output zi can be a disentangled representation, i.e. fθ(·) = {f (k)

θ (·)}Kk=1, where K is the
number of channels. To be specific, zi is expected to be composed of K independent components,
i.e., zi = [zi,1, zi,2, . . . , zi,K ], where zi,k = f

(k)
θ (Gi) ∈ R∆d, k ∈ [1,K],∆d = d/K, assuming

that there are K latent factors behind the graph instances to be disentangled. The kth component
zi,k is for characterizing the aspect of Gi that is pertinent to factor k accurately. We also assume
that the value of zi,k will be merely a white noise vector if the input graph Gi does not contain any
information of factor k. Note that we focus primarily on undirected graphs in our method, although it
can be straightforwardly extended to directed graphs.

2.2 Preliminaries on Contrastive Learning

Unlike generative models, contrastive learning is an instance-wise discriminative approach that aims
at making similar instances closer and dissimilar instances far from each other in representation
space [16, 17]. It treats each instance in the dataset as a distinct class of its own and trains a classifier
to distinguish between individual instance classes [18, 19]. Given a dataset X = {xi}Ni=1, each
instance xi is assigned with a unique surrogate label yi, since no ground-truth labels are given. yi
is often regarded as the ID of the instance in the dataset, i.e., yi = i. So the probability classifier is
defined as:

pθ(yi|xi) =
exp φ(vi, v

′
yi)∑N

j=1 exp φ(vi, v′yj )
, (1)

where θ denotes the parameters of the encoder. Both vi and v′yi are the embeddings from xi, which
are generated from two different encoders [20], or a shared encoder [21]. Before being passed
into the encoder, the input xi could undergo data augmentations [21], which play a critical role in
defining effective predictive tasks for learning the encoder. φ is the similarity function, often adopting
cosine similarity with temperature τ [22], i.e., φ(vi, v

′
yi) = v′>yi vi/τ , assuming the embeddings are

`2-normalized. Then the learning objective is to maximize the joint probability
∏N
i=1 p(yi|xi) over

the dataset, namely minimize the negative log-likelihood function
∑N
i=1 `i, if let `i = −log p(yi|xi).
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Note that loss `i could be NCE loss [18], InfoNCE loss [23], or NT-Xent loss [21]. The encoder will
be encouraged to learn a representation space where samples (e.g., augmented data) from the same
instance (e.g., an image, a graph) are pulled closer and samples from different instances are pushed
apart [16]. For convenience, we follow the settings above in this work.

3 Disentangled Graph Contrastive Learning

In this section, we present the proposed DGCL model. The framework of DGCL is shown in Figure
1. In Section 3.1, we introduce the disentangled graph encoder to identify the complex latent factors
and capture multiple aspects of graphs. Then in Section 3.2, we propose a factor-wise contrastive
learning approach to conduct instance discrimination under each latent factor independently. The
objective and the details of the optimization are derived in Section 3.3 and Section 3.4, respectively.

3.1 Disentangled Graph Encoder

The key of the disentangled graph encoder is to produce the factorized graph representation zi =
[zi,1, zi,2, . . . , zi,K ] for each input graph Gi ∈ G. Based on the factorized representation, we can
infer the related latent factors behind the graph.

Generally, GNNs use the graph structure and node features to learn the representation vector hv of
each node v with a message-passing mechanism, i.e., iteratively updating the representation of a node
by aggregating representations of its neighbors. The propagation of the lth layer is formulated as:

hlv = COMBINEl(hl−1
v ,AGGREGATEl({hl−1

u : u ∈ N (v)})), (2)

where hlv is the representation of node v at the lth layer and h0
v is initialized with node features.

N (v) is the neighborhood to node v. We use the term GNN to indicate the message-passing layer in
Eq. (2).

Let Hl = {hlv|v ∈ V } be the node embeddings after the lth GNN, where V denotes the node set of
the graph. After applying L traditional message-passing layers, we propose a graph-disentanglement
layer to learn the disentangled representations. The goal is to extract features specific to each latent
factor with a separate channel. Specifically, we adopt K separate channels to identify the complex
heterogeneous latent factors and capture multiple aspects of the input graph. For each channel, we
first utilize a GNNk to propagate information with its own parameters: HL+1

k = GNNk(HL, A),
where A is the adjacency matrix of the input graph. HL+1

k is the node embeddings which is only
pertinent to the kth latent factor. Then the READOUT function of each channel, which is realized
with mean pooling in our method, is used to summarize all the obtained node representations into
a fixed-length graph-level representation: hGi,k = READOUTk({HL+1

k }). Finally, each channel
outputs the factorized graph representation with a separate MLP: zi,k = MLPk(hGi,k).

Compared with the existing graph encoders that are inherently holistic, our disentangled graph
encoder consists of K channels, rending the possibility to identify the complex heterogeneous latent
factors and capture multiple aspects of graphs.

3.2 Disentangled Factor-wise Contrastive Learning

Unlike the existing contrastive learning methods, DGCL designs a novel factor-wise instance dis-
criminative task and learns to solve this task under each latent factor independently. This design not
only makes similar samples closer and dissimilar samples far from each other in the representation
space, but also encourages the learned representation to incorporate factor-level information for
disentanglement.

Specifically, we assume that the formation of real-world graphs is usually driven by multiple latent
heterogeneous factors. So the instance discriminative task should be represented as the expectation of
several subtasks under the latent factors:

pθ(yi|Gi) = Epθ(k|Gi) [pθ(yi|Gi, k)] . (3)

Here pθ(k|Gi) is the probability distribution over latent factors for the input graph Gi. pθ(yi|Gi, k)
denotes the instance discrimination subtask under the kth latent factor.
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Firstly, given the representation zi of Gi derived from the disentangled graph encoder fθ(·), we
present a prototype-based method to obtain pθ(k|Gi). We introduce K latent factor prototypes
{ck}Kk=1, and the probability of the kth latent factor reflected in Gi is parameterized as:

pθ(k|Gi) =
exp φ(zi,k, ck)∑K
k=1 exp φ(zi,k, ck)

, (4)

where φ is the cosine similarity with temperature τ , i.e., φ(a,b) = COSINE(a,b)/τ and
COSINE(a,b) = a>b/(‖a‖2 ‖b‖2).

Then, we define the instance discrimination subtask under the kth latent factor as:

pθ(yi|Gi, k) =
exp φ(zi,k, z

′
yi,k

)∑N
j=1 exp φ(zi,k, z′yj ,k)

, (5)

where zi,k and z′yi,k are the disentangled representations produced by the shared graph encoder, and
yi is the unique surrogate label (see Section 2) of the graph Gi. In our method, we follow [18, 19] to
implement yi as the ID of the graph in the dataset, i.e., yi = i. For notation convenience, we do not
distinguish yi and i hereafter when there is no risk of confusion.

Next, we describe the process to get z′i,k, i.e. z′yi,k in Eq. (5). First, the input graph Gi undergoes
graph data augmentations to obtain its correlated views G′i, and they form a positive pair. Data
augmentation is expected to create novel and realistically rational data by applying certain transforma-
tions that do not affect the label, and plays a critical role in defining effective predictive tasks [21, 11].
We follow [11] to adopt four types of graph augmentation strategies, including node dropping, edge
perturbation, attribute masking, and subgraph sampling. More details of graph augmentations can
be found in supplementary material. Then, the augmented graph G′i is also fed into the shared
disentangled graph encoder fθ(·) to produce z′i,k, i.e. z′yi,k. Given the disentangled representations
zi,k and z′i,k of the Gi and G′i respectively, we conduct factor-wise contrastive learning for each
latent factor independently as Eq. (5).

3.3 Evidence Lower Bound (ELBO)

We present the objective of our method. Following the existing methods, we aim to maximize the
joint probability

∏N
i=1 p(yi|Gi) over the graph dataset G = {Gi}Ni=1. We learn the model parameters

θ by maximizing the log-likelihood:

θ∗ = arg max
θ

N∑
i=1

log pθ(yi|Gi) = arg max
θ

N∑
i=1

log Epθ(k|Gi) [pθ(yi|Gi, k)] . (6)

However, directly maximizing the log-likelihood function is difficult because of the latent factors.
Therefore, we instead optimize the evidence lower bound (ELBO) of the log-likelihood function
given by Theorem 1. See the supplementary material for the proof.

Theorem 1. The log likelihood function of each graph log pθ(yi|Gi) is lower bounded by the ELBO:
L(θ, i) = Eqθ(k|Gi,yi)[log pθ(yi|Gi, k)]−DKL(qθ(k|Gi, yi) ‖ pθ(k|Gi)).

To make the ELBO as tight as possible, we require that qθ(k|Gi, yi) is close to pθ(k|Gi, yi), whose
detailed implementations are provided in the next subsection (see Eq. (9) and Eq. (7)). In the ELBO
L(θ, i), pθ(yi|Gi, k) and pθ(k|Gi) have been introduced in Eq. (5) and Eq. (4), respectively, and
qθ(k|Gi, yi) is a variational distribution to infer the posterior distribution of the latent factors after
observing both Gi and its correlated view G′yi .

3.4 Optimization

We introduce a variational distribution qθ(k|Gi, yi) to infer the posterior probability pθ(k|Gi, yi) that
is defined with Bayes’ theorem as follows:

pθ(k|Gi, yi) =
pθ(k|Gi)pθ(yi|Gi, k)∑K
k=1 pθ(k|Gi)pθ(yi|Gi, k)

. (7)
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pθ(k|Gi, yi) is the probability of the kth latent factor pertinent to both Gi and the augmented G′i
simultaneously. Compared with the prior distribution pθ(k|Gi) in Eq. (4), pθ(k|Gi, yi) incorporates
more useful information (i.e., factor-wise similarity) from pθ(yi|Gi, k). Although both pθ(k|Gi) and
pθ(k|Gi, yi) are designed to infer the latent factor distribution, pθ(k|Gi) is calculated only given the
graph Gi, but pθ(k|Gi, yi) is calculated after observing Gi, the augmented version G′yi , and their
similarities under the specific latent factor.

However, we cannot compute the posterior probability tractably because of the term pθ(yi|Gi, k). If
we directly calculate pθ(yi|Gi, k) according to Eq. (5), all the instances in the dataset G are needed
for computing the denominator in Eq. (5) , which could be computationally prohibitive [24, 18, 19].
To tackle this obstacle, several strategies are proposed in the literature, including memory bank
[18, 20], dynamic dictionary [25], NT-Xent loss [21]. Here, we adopt NT-Xent loss on a minibatch
B ⊆ G. So in practice, the instance discrimination under each latent factor is calculated by:

p̂θ(yi|Gi, k) =
exp φ(zi,k, z

′
i,k)∑|B|

j∈B,j 6=i exp φ(zi,k, z′j,k)
. (8)

We approximate the posterior probability pθ(k|Gi, yi) with a variational distribution defined as:

qθ(k|Gi, yi) =
pθ(k|Gi)p̂θ(yi|Gi, k)∑K
k=1 pθ(k|Gi)p̂θ(yi|Gi, k)

. (9)

Finally, we seek to learn the parameters θ of the disentangled graph encoder. More specifically, we
calculate qθ(k|Gi, yi) and maximize the ELBO over a mini-batch B using mini-batch gradient ascent:

L(θ,B) =
∑
i∈B
L(θ, i). (10)

Encourage disentanglement. Note that our objective and its optimization can inherently encourage
disentanglement without adding extra regularization term (e.g., minimizing mutual information). The
reason is that factorizing the instance discrimination into K factor-wise subtasks will enforce the
independence of the learned graph representation zi. Besides, qθ(k|Gi, yi) is computed based on kth

and other K − 1 latent factors. Thus, the graph encoder is forced to preserve exclusive information in
each channel to get more accurate approximation to the posterior, if a tighter ELBO is expected. The
strong inductive biases in DGCL encourage to learn disentangled graph representations that match
the ground truth factors behind the graphs.

4 Experiments

We empirically evaluate our proposed method through experiments, and analyze its behavior on
synthetic graph dataset to gain deeper insight. Ablation studies are conducted to show the effectiveness
of the proposed method. We provide more discussions in supplementary material, including the
complexity of our method, the impact of the hyper-parameters, etc.

4.1 Experimental Setup

Datasets. To demonstrate the advantages of our method, we conduct experiments on nine well-
known graph classification datasets including four bioinformatics datasets, i.e., MUTAG, PTC-MR,
NCI1, PROTEINS, and five social network datasets, i.e., COLLAB, IMDB-BINARY, IMDB-MULTI,
REDDIT-BINARY, and REDDIT-MULTI-5K. We also adopt a larger graph dataset ogbg-molhiv
from Open Graph BenchMark (OGB) [26]. More details are provided in supplementary material.

Baselines. We compare DGCL with the following two groups of baselines. One group of baselines
are graph kernels including Shortest Path Kernel (SP) [27], Graphlet Kernel (GK) [28], Weisfeiler-
Lehman Sub-tree Kernel (WL) [29], Deep Graph Kernels (DGK) [30], and Multi-Scale Laplacian
Kernel (MLG) [31]. The other group of baselines are classical unsupervised graph representation
learning methods including node2vec [32], sub2vec [33], graph2vec [34], GVAE [35], and more
recent contrastive graph representation learning methods including InfoGraph [5], GCC [10], MVGRL
[9], and GraphCL [11].

Evaluation. To verify the effectiveness of our method, we follow the common evaluation protocols
in the existing literature [34, 5, 30, 11], where graph embeddings are generated from each method
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Table 1: Graph classification accuracy (%) of DGCL and baselines. In each column, the boldfaced
score denotes the best result and the underlined score represents the second-best result. “–” indicates
the result is not reported in the paper.

MUTAG PTC-MR PROTEINS NCI1 IMDB-B IMDB-M RDT-B RDT-M5K COLLAB
SP 85.2±2.4 58.2±2.4 75.1±0.5 73.0±0.2 55.6±0.2 38.0±0.3 64.1±0.1 39.6±0.2 –
GK 81.7±2.1 57.3±1.4 71.7±0.6 62.3±0.3 65.9±1.0 43.9±0.4 77.3±0.2 41.0±0.2 72.8±0.3
WL 80.7±3.0 58.0±0.5 72.9±0.6 80.0±0.5 72.3±3.4 47.0±0.5 68.8±0.4 46.1±0.2 –

DGK 87.4±2.7 60.1±2.6 73.3±0.8 80.3±0.5 67.0±0.6 44.6±0.5 78.0±0.4 41.3±0.2 73.1±0.3
MLG 87.9±1.6 63.3±1.5 76.1±2.0 80.8±1.3 66.6±0.3 41.2±0.0 – – –

node2vec 72.6±10.2 58.6±8.0 57.5±3.6 54.9±1.6 – – – – –
sub2vec 61.1±15.8 60.0±6.4 53.0±5.6 52.8±1.5 55.3±1.5 36.7±0.8 71.5±0.4 36.7±0.4 –

graph2vec 83.2±9.3 60.2±6.9 73.3±2.1 73.2±1.8 71.1±0.5 50.4±0.9 75.8±1.0 47.9±0.3 –
GVAE 87.7±0.7 61.2±1.8 – – 70.7±0.7 49.3±0.4 87.1±0.1 52.8±0.2 –

InfoGraph 89.0±1.1 61.7±1.4 74.4±0.3 76.2±1.1 73.0±0.9 49.7±0.5 82.5±1.4 53.5±1.0 70.7±1.1
GCC – – – – 72.0 49.4 89.8 53.7 78.9

MVGRL 89.7±1.1 62.5±1.7 – – 74.2±0.7 51.2±0.5 84.5±0.6 – –
GraphCL 86.8±1.3 63.6±1.8 74.4±0.5 77.9±0.4 71.1±0.4 50.7±0.4 89.5±0.8 56.0±0.3 71.4±1.2
DGCL 92.1±0.2 65.8±1.5 76.4±0.5 81.9±0.2 75.9±0.7 51.9±0.4 92.7±0.2 56.1±0.2 81.2±0.3

and then fed into a downstream SVM classifier. We adopt the 10-fold cross validation accuracy, and
report the mean accuracy (%) with standard variation after five repeated runs.

Implementation Details. For a fair comparison, the hyper-parameters of the graph augmentations
are kept consistent with GraphCL. We use GIN [4] as the message-passing layers since it is shown to
be one of the most expressive message-passing GNNs. Since the ground-truth number of the latent
factors is unknown, we search the number of channels K from 1 to 10. More implementation details
can be found in supplementary material.

4.2 Results on Real Benchmark Graphs

The results are reported in Table 1. We can see that the graph contrastive learning methods generally
outperform the graph kernel methods or the classical unsupervised methods, which verify the
effectiveness of contrastive learning. Our method DGCL consistently achieves the best performance
compared with other contrastive methods (e.g., MVGRL, GrpahCL) and classical unsupervised
methods (e.g., graph2vec, GVAE), demonstrating the superiority of our method. For example, our
method increases the classification accuracy by 2.4%, 2.2%, and 2.9% compared with the second-best
methods on MUTAG, PTC-MR, and RDT-B, respectively. We attribute the results to the fact that
these existing methods fail to identify the underlying latent factors which are important in preserving
graph properties and can not learn the disentangled representations. In contrast, we disentangle graph
representations to explicitly consider the entanglement of heterogeneous factors. When compared to
graph kernel methods, our method also has the best accuracy on all the datasets. Notice that none of
these kernel methods is consistently competitive across all of the datasets, as opposed to our method.

Besides the common setting of unsupervised representation learning above, we also consider another
setting of semi-supervised representation learning [11] on the ogbg-molhiv from Open Graph Bench-
mark [26] to better evaluate our method. Specifically, we first perform pre-training with all training
data without labels. Then we conduct fine-tuning on the partial labeled training data and evaluation
on the validation/test sets. The task on the ogbg-molhiv dataset is binary classification evaluated by
ROC-AUC metric, instead of accuracy in the experiments above. We adopt the provided evaluator
and dataset splits for a fair comparison. We compare DGCL with the strong self-supervised baseline
GraphCL with 1%, 10%, and 20% label rate for fine-tuning. The results are shown in Figure 2. With
the increase of the label rate, the results improve for both our method and GraphCL. Our method
achieves significant improvement over GraphCL with 1.4%, 3.0%, and 1.4% performance gains at
1%, 10%, and 20% label rate, respectively. The results illustrate that our method is also able to handle
large-scale graphs, demonstrating the benefit of learning disentangled graph representations in the
contrastive manner.

4.3 Results on Synthetic Graphs

To further investigate the behavior of our method, we generate a synthetic dataset consisting of 1,000
graphs with known latent factors. Specifically, we generate synthetic graphs using the stochastic
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block model [36]. Each graph contains four communities and each community consists of 10 nodes.
We define the latent factor as the probability p that two nodes are connected in a community. p can
take value from {0.2, 0.3, . . . , 0.9}, meaning that there are eight latent factors in the dataset in total.
The probability for each community is drawn from the eight possible choices without replacement.
Two nodes in different communities are connected with probability 0.05. The rows of the adjacency
matrices are used as node features, and the ground-truth communities are used as labels, i.e., there
are 8 classes and each graph has 4 labels. We train our method and two baseline methods, i.e.,
MVGRL and GraphCL on the generated synthetic dataset with self-supervision. Then we adopt the
SVM classifier on the learned graph embeddings for each method and use the Micro-F1 (%) as the
evaluation metric. Other settings are the same as Section 4.1.

We vary the number of channels K of our method and report the results in Figure 3. Our method
reports better performance than the baselines. We also find that as K increases from 1 to 8, the results
of DGCL improves, which verifies the importance of disentangling latent factors. After reaching the
peak at K = 8, the performance slightly drops, but in general, our method is not very sensitive when
K is not too large. Our method achieves the best results when K is equal to the ground-truth number
of latent factors, indicating we can model the underlying structure of this simulation dataset.

Besides the quantitative evaluation, we also provide a qualitative evaluation by plotting the correlation
of the latent features in Figure 4. The figure shows the absolute values of the correlation between
the elements of 128-dimensional graph representation obtained from MVGRL, GraphCL, and our
DGCL (K = 8) on the synthetic dataset. We can see from the results that the graph representations
of MVGRL and GraphCL are entangled. In comparison, the correlation of our DGCL shows eight
diagonal blocks, meaning that the channels of DGCL likely extract mutually exclusive information
and output disentangled representations.

4.4 Ablation Studies

We perform ablation studies over the key components of our method to understand their functionalities
more deeply. We compare DGCL with the following two variants: (1) Variant 1: it sets pθ(k|Gi) =
1/K a uniform distribution of latent factors. (2) Variant 2: it sets K = 1 directly, so that our method
will degenerate to the entangled graph contrastive learning model.

Table 2: Ablation studies on the variants of our method. We report the accuracy (%) with standard
variation on the datasets. The results of Variant 1 and 2 drop compared with DGCL, demonstrating
the significance to infer latent factors behind the graphs and conduct factor-wise contrastive learning.

MUTAG PTC-MR PROTEINS NCI1 IMDB-B IMDB-M RDT-B RDT-M5K COLLAB
DGCL 92.1±0.2 65.8±1.5 76.4±0.5 81.9±0.2 75.9±0.7 51.9±0.4 92.7±0.2 56.1±0.2 81.2±0.3

Variant 1 89.3±0.3 64.3±1.3 74.9±0.2 78.5±0.5 73.4±0.5 50.3±0.2 91.1±0.7 55.9±0.3 77.5±0.4
Variant 2 86.5±0.6 63.5±1.6 73.9±0.6 77.7±0.6 70.9±0.5 49.8±0.3 89.7±0.6 55.7±0.2 71.5±0.8

The results of DGCL and its variants are shown in Table 2. We observe a drop in performance of
Variant 1, demonstrating the efficacy of inferring the latent factors of the graphs. In variant 2, the
latent factors are entangled in the graph representation, making difficulties for characterizing different
aspects of the graphs and conducting discrimination tasks in terms of each latent factor independently.
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(a) MVGRL (b) GraphCL (c) DGCL

Figure 4: An analysis of feature correlation on the synthetic graphs with eight latent factors. The
figures show the absolute value of the correlations between the elements of the representations
learned by MVGRL, GraphCL, and DGCL with eight channels, respectively. We can see that the
representations generated from DGCL present a more block-wise correlation pattern, indicating that
the eight channels of the disentangled graph encoder in DGCL are able to capture mutually exclusive
information and the latent features have indeed been disentangled.

The deterioration of performance verifies the significance of the proposed factor-wise contrastive
learning.

5 Related Work

In this section, we review related works on graph neural networks, contrastive learning on graphs,
and disentangled representation learning.

Graph Neural Networks. Graph structured data is ubiquitous in the real world [26, 37, 38, 39, 40].
Recently, graph neural networks (GNNs) [1, 2, 3, 4, 41, 42] have revolutionized the field of graph
representation learning. GNNs generally adopt a neighborhood aggregation (message passing)
paradigm, i.e., the embedding of node is iteratively updated by aggregating embeddings of its
neighbors [3, 4]. The representation of the whole graph is summarized on node embeddings through
the readout function, i.e., graph pooling [4]. However, for achieving state-of-the-art performance,
most famous GNNs, including their variants, are trained end-to-end with task-specific labels, which
could be extremely scarce for some graph datasets. Compared with these supervised models, our
model, based on self-supervised contrastive learning, can largely eliminate the over-dependence on
the manual labels, which is crucial for graph representation learning.

Contrastive Learning on Graphs. Recently, contrastive learning, adopting the instance dis-
crimination as the pretext task, has become a dominant component in self-supervised learning
methods [25, 21, 18, 19, 23]. Some literatures utilizing contrastive learning for graph data are
proposed [5, 10, 9, 11, 43, 7]. The key of these methods is to maximize the agreement (i.e., similarity)
between proper transformations or different views of the input graph. However, the existing graph
contrastive learning methods explore general settings where entanglement is severe and do not incor-
porate disentangled representation learning. They fail to recognize and disentangle the heterogeneous
latent factors behind complex graph data. These holistic methods have limited capacity in preserving
detailed graph properties, which easily result in suboptimal representations for downstream tasks.

Disentangled Representation Learning. Disentangled representation learning is to learn factorized
representations that identify and disentangle the underlying explanatory factors hidden in the observed
data [14]. The existing efforts about disentangled representation learning are mainly on computer
vision [44, 45, 46]. It has been raising a surge of interest in graph-structured data recently [47, 48, 49,
12]. This line of works attempts to learn disentangled representations for graphs but heavily relies
on the annotated labels, which largely restricts their applications where labeled data are unavailable
or expensive to collect. On the other hand, some works [35, 50] are based on the generative model,
namely utilizing Variational Autoencoders (VAEs) on graph for disentanglement, since the hyper-
parameter β of VAEs can balance the reconstruction and disentanglement [51, 52]. However, the
reconstruction in generative methods could be computationally expensive [53, 17] and even introduce
bias that has a negative effect on the learned representation [23]. In addition, the reconstruction for
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graph-structured data often involves discrete decisions that are not differentiable [50]. How to learn
disentangled representation on graph-structured data with contrastive learning is largely unexplored.

6 Conclusions

In this paper, we propose a disentangled graph contrastive learning model (DGCL) to solve the
problem of disentangled self-supervised graph representation learning for the first time. We design a
disentangled graph encoder with a tailored multi-channel message-passing layer, which is capable of
aggregating features in a disentangled manner. We further propose a factor-wise contrastive learning
approach to solve instance discrimination task under each latent factor independently, so that the
learned representations of DGCL are encouraged to not only best describe the graphs but also be
disentangled. Therefore, each component of the disentangled representations tends to characterize
a disentangled aspect of the graph that is pertinent to a latent factor. Extensive experiments on
both synthetic and real-world datasets demonstrate the superiority of our method against several
state-of-the-art baselines in self-supervised graph representation learning.
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