

Signed Graph Neural Network with Latent Groups

Haoxin Liu*Ziwei Zhang*Peng CuiYafeng ZhangQiang CuiJiashuo LiuWenwu ZhuTsinghua UTsinghua UTsinghua UMeituanMeituanTsinghua UTsinghua U

* Equal contribution

Besides Positive Relationships

Negative relationships also play an important role

Foes

- Disagreements
- Boycotts
- Dislike
- Distrust

How to model positive and negative relationships simultaneously?

Modeling: Signed Graph

Assign signs to links

3

Challenges

Unsinged graph representation learning methods not suitable

Fundamental hypotheses in unsinged graphs fail e.g. homophily

Complex semantic relationships

\square e.g. $(2^{k+1}-1)$ types of relationships considering k-order neighbors

e.g. 38 popular signed motifs^[2]

Homophily

People of similar characteristics tend to befriend each other

FIG.1 illustration of homophily^[1]

[1] "Inequality's Economic and Social Roots: The Role of Social Networks and Homophily." Available at SSRN 3795626 (2021).
[2] "Finding, counting and listing all triangles in large graphs, an experimental study." International workshop on experimental and efficient algorithms. 2005.

Existing Signed GRL Methods

- Based on balance theory
 - □ SIDE, WWW 2018
 - BESIDE, CIKM 2018
 - □ SGCN, ICDM 2018
 - □ SNEA, AAAI 2020
 - □ ASiNE, SIGIR 2020
 - □ SIHG, TKDE 2020
 - □ SHCN, TOIS 2020
 - □ SGDN, Arxiv 2020
 - □ SGDNN, AAAI 2021

Not based on balance theory
SLF, KDD 2019
ROSE, WWW 2020

Signed GNN(using message passing mechanism)

Most signed GRL methods are based on balance theory Almost all signed GNN methods are based on balance theory

The Most Popular Solution: Balance Theory

Balance theory: a well-known social theory

- "The friend(foe) of my friend is my friend(foe)"
- "The friend(foe) of my foe is my foe(friend)"

Signed GRL methods based on balance theory

- Signed Network Embedding
 - Signed random walk based on balance theory
- Signed Graph Neural Network
 - Aggregate layer by layer based on balance theory

FIG.1 illustration of balance theory^[1]

[1] Derr T, Ma Y, Tang J. Signed graph convolutional networks[C]. 2018 IEEE International Conference on Data Mining (ICDM). IEEE, 2018: 929-934. [2] Jung J, Yoo J, Kang U. Signed Graph Diffusion Network[J]. arXiv preprint arXiv:2012.14191, 2020.

Limitations of Balance Theory

□ Theoretical Analysis:

Balance theory essentially equals to the two-conflict-groups assumption

□ Theoreom A^[1]

Let G be a signed undirected complete graph in which each triangle has an odd number of postive edges.

There the medice of Q care he mertioned into two coto

Then the nodes of G can be partioned into two sets A and B (where one of A or B may be empty),

such that all edges within A and B are positive,

and all edges with one end in A and the other in B are negative.

□ Theoreom B^[2]

A s-graph G is balanced if and only if its point set E can be partioned into two disjoint subsets E_1 , E_2 , in such a way that each positve line of G joints two points of the same subset and each negative line joints two points of different subsets

7

Balance theory is too ideal

[1] Frank Harary et al. 1953. On the notion of balance of a signed graph. Michigan Mathematical Journal (1953).[2] Cartwright D, Harary F. Structural balance: a generalization of Heider's theory[J]. Psychological review, 1956, 63(5): 277.

Beyond Balance Theory: K-group Theory

■ Step 0: two conflict groups (balance theory)

□ Step 1: k conflict groups

□ Step2: k-group theory

K groups with arbitrary relations between groups

- Negative
- Positive
- Netural

•

signed positive link
signed negative link

Beyond Balance Theory: K-group Theory

Final Assumption & Overall Framework

Final Assumption: Combine Global and Local View

- □ Global: k-group theory
 - Capture underlying k groups with arbitrary relations between groups
- □ Local: without any assumption
 - Give the model more flexibility to accommodate other factors,
 - Micro-structures within groups
 - Influenced by node features
 - Individual heuristic information
 - e.g., always forms negative relations
 - Tolerate randommes/noise
 - **□**.....

Proposed: Group Signed GNN

- A dual architecture
 - □ Global signed convolution module
 - Llobal signed convolution module

Overall Comparison m_G layers Initialize Assignment Combin **Global Signed Convolution Module** Positive Edge Negative Edge Input Graph Combine Z_L **Local Signed Convolution Module** Methods □ Assumptions 2 conflict groups(Balance Theory) □ K conflict groups □ K conflict groups **K** groups with arbitrary relation

- □ Global:K groups with arbitrary relations
 - &Local: other flexible factors without any assumption

- 2 conflict groups(Balance Theory)
- □ Global model of our signed GRL model
- Our signed GRL model: Group Signed GNN

Goal

Discover latent community structure based on k-group theory

□ Challenges

- Model complex relationships between communities
- Represent nodes in a view of the groups
- Scalable

Solutions

- □ Denote a learnable embedding matrix $\mathbf{Z}_{\mathbf{C}} = [\mathbf{Z}_{C_1}, \mathbf{Z}_{C_2}, ..., \mathbf{Z}_{C_K}] \in \mathbb{R}^{K \times d_G}$ for K groups
- Complex relationships are freely modeled in the hidden space
- □ Node global embeddings Z_G are represented as a linear combination of the group embeddings
- i.e., $\mathbf{Z}_G = \mathbf{S}\mathbf{Z}_C$, where assignment matrix $\mathbf{S} \in \mathbb{R}^{N imes K}$ is learned

Assignment Initialization

lacksquare Generate the initial assignment probability matrix $\mathbf{S} \in \mathbb{R}^{N imes K}$

$$\mathbf{X}_{v}^{\prime} = \mathrm{MLP}(\mathbf{X}_{v}) \quad (1)$$
$$\mathbf{Q}_{v,C_{i}}^{(0)} = \mathbf{Z}_{C_{i}}^{T} \mathbf{X}_{v}^{\prime}, \mathbf{S}_{v,C_{i}}^{(0)} = \frac{\exp\left(\mathbf{Q}_{v,C_{i}}^{(0)}\right)}{\sum_{j=1}^{K} \exp\left(\mathbf{Q}_{v,C_{j}}^{(0)}\right)} \quad (2)$$

sum aggregator

Assignment Updating

$$\mathbf{S}_{v}^{(m)} = \mathcal{F}^{(m)} \left(\mathbf{S}_{v}^{(m-1)}, \mathbf{p}_{v}^{(m)}, \mathbf{n}_{v}^{(m)} \right)$$

= softmax $\left(\sigma \left(\left[\mathbf{S}_{v}^{(m-1)}, \mathbf{p}_{v}^{(m)}, \mathbf{n}_{v}^{(m)} \right] \mathbf{W}_{G}^{(m)'} \right) \mathbf{W}_{G}^{(m)} \right)$

- \square Obtaining Global Representations \mathbf{Z}_{G}
 - \square Repeating the 2nd ans 3rd steps for M_G time, i.e., adopting M_G message-passing layers
 - Obtaining the final assignment matrix S $\mathbf{S} = \mathbf{S}^{(M_G)}$

Using the linear combination of group embeddings

$$\mathbf{Z}_G = \mathbf{S}\mathbf{Z}_C$$

Local Signed Convolution Module

Goal

Give the model more flexibility to accommodate other factors

Without any assumption

Solution

Treat self connections, positive links, and negative links as three relations

□ Model

A multi-relational GNN

 \square Conduct message-passing for M_L layers, the final node local embeddings are \mathbf{Z}_L

$$\mathbf{h}_{v}^{(m)} = \left[\sum_{u \in \mathcal{N}_{v}^{+}} \mathbf{z}_{u}^{(m-1)}, \sum_{u \in \mathcal{N}_{v}^{-}} \mathbf{z}_{u}^{(m-1)}\right], \quad \mathbf{z}_{v}^{(m)} = \sigma\left(\left[\mathbf{z}_{v}^{(m-1)}, \mathbf{h}_{v}^{(m)}\right] \mathbf{W}_{L}^{(m)} + \mathbf{b}_{L}^{(m)}\right)$$

Proposed Model: Group Signed GNN (GS-GNN)

Concat global embeddings Z_G and local embeddings Z_L $Z = [Z_G, Z_L]$

Objective function

□ e.g. for link sign prediction task, i.e., predicting the polar of the given links

$$\mathcal{L} = -\frac{1}{|\mathcal{E}^+ \cup \mathcal{E}^-|} \left(\sum_{(u,v) \in \mathcal{E}^+} \log p(u,v) + \sum_{(u,v) \in \mathcal{E}^-} (1 - \log p(u,v)) \right) + \lambda \mathcal{L}_{\text{reg}}$$

Experimental Setting: Datasets, Task & Metrics

Datasets

- Four public real-world signed graphs
 - Bitcoin-Alpha, Bitcoin-OTC: two signed graphs extracted from bitcoin trading platforms
 - □ Slashdot: a technology-related news website
 - □ Epinions: a consumer review site
- Synthetic datasets

Task

Link sign prediction

Evaluation Metrics

- Four metrics
 - □ AUC: area under curve
 - Macro-F1:macro-averaged F1 score
 - □ Micro-F1: micro-average F1 score
 - Binary-F1: binary average F1 score
- □ Higher value indicates better performance

Table 1: The Statistics of Real-world Datasets

Datasets	# Nodes	# Links	# Positive Links (Ratios)	# Negative Links (Ratios)
Bitcoin-Alpha	3,775	14,120	12,721 (90.09%)	1,399 (9.91%)
Bitcoin-OTC	5,875	21,489	18,230 (84.83%)	3,259 (15.17%)
Slashdot	37,626	419,072	313,543 (74.82%)	105,529 (25.14%)
Epinions	45,003	616,031	513,851 (83.41%)	102,180 (16.59%)

Experimental Setting: Baselines

Baselines

- Signed graph clustering method
 - □ SPONGE (AISTATS 2019)
- Signed network embedding based on balance theory
 - □ SIDE (WWW 2018)
- Signed network embedding not based on balance theory
 - □ SLF (KDD 2019)
- Unsigned GNN
 - GCN (ICLR 2017)
- Signed GNN based on balance theory
 - □ SGCN (ICDM 2018)
 - SNEA (AAAI 2020): +attention
 - □ SGDN (Arxiv 2020): +diffusion

Our method: GS-GNN

Results on Synthetic Dataset

Question 1

□ Can GS-GNN fully utilize the k-group theory and discover the underlying structure of signed graphs?

Synthetic dataset

 \Box Using the signed stochastic block model (SSBM) to generate K_S conflict groups with random noise

Assumption		Method	$K_S = 2$	$K_S = 3$	$K_S = 4$	$K_S = 5$	$K_S = 6$		
Palanaa Thaamu		SGCN	0.442	0.398	0.362	0.334	0.357		
Dalance	neory	SGDN	0.791	0.682	0.612	0.530	0.495		
	$K=K_S$	SPONGE	0.983	0.989	0.990	0.990	0.989		
		GS-GNN	0.984	0.991	0.991	0.989	0.982		
K-Group	K=2	SPONGE	0.983	0.853	0.749	0.670	0.600		
K-Group		GS-GNN	0.984	0.991	0.988	0.984	0.889		
	K=6	SPONGE	0.463	0.662	0.848	0.940	0.989		
		GS-GNN	0.986	0.988	0.990	0.989	0.980		

Results of Macro-F1

Conclusion

- Demonstrate the superiority of GS-GNN in utilizing the k-group theory
- □ GS-GNN even outperforms the SPONGE

Results on Real Graphs

Question 2

■ How does GS-GNN perform on different real graphs which is usually complicated,

compared with other state-of-the-art signed graphs representation learning methods?

Results

Dataset	Metric	SPONGE	SLF	SIDE	GCN	SGCN	SNEA	SGDN	GS-GNN	
	AUC	0.513	0.847	0.797	0.806	0.858	0.866	0.840	0.893	+3.12%
Ritcoin Alpha	Macro-F1	0.504	0.668	0.665	0.546	0.706	0.727	0.663	0.793	+9.08%
Бисош-Арна	Micro-F1	0.901	0.819	0.824	0.902	0.864	0.873	0.894	0.930	+3.10%
	Binary-F1	0.948	0.892	0.896	0.948	0.921	0.926	0.942	0.961	+1.37%
	AUC	0.700	0.873	0.828	0.845	0.871	0.863	0.863	0.915	+4.81%
Bitagin OTC	Macro-F1	0.644	0.735	0.713	0.675	0.754	0.760	0.734	0.837	+10.13%
Bitcom-Ore	Micro-F1	0.763	0.828	0.820	0.875	0.850	0.858	0.871	0.920	+5.14%
	Binary-F1	0.850	0.892	0.889	0.928	0.908	0.914	0.926	0.952	+2.59%
	AUC	0.500	0.888	0.820	0.819	0.873	0.888	0.887	0.916	+3.15%
Slachdat	Macro-F1	0.432	0.772	0.725	0.670	0.760	0.769	0.769	0.812	+5.18%
Slashuot	Micro-F1	0.752	0.812	0.773	0.797	0.802	0.812	0.838	0.865	+3.22%
	Binary-F1	0.861	0.867	0.840	0.875	0.859	0.868	0.896	0.915	+2.12%
	AUC	0.508	0.928	0.878	0.869	0.925	0.931	0.930	0.959	+3.01%
Epinions	Macro-F1	0.474	0.795	0.746	0.685	0.800	0.819	0.819	0.865	+5.62%
	Micro-F1	0.832	0.865	0.829	0.864	0.872	0.888	0.903	0.931	+3.10%
	Binary-F1	0.908	0.915	0.891	0.922	0.920	0.931	0.942	0.961	+2.02%

Observations

 SPONGE fails on real-world graphs
Unsigned GNN outperforms other baselines in some cases
GS-GNN consistently outperforms all the baselines on all datasets with all evaluation metrics
5.14%~10.13% improvement of Macro-F1 indicates that GS-GNN can better model the negative links

Ablation Study Results

□ Question 3

Does sum aggregator contribute to our proposed GS-GNN method?

Results

The ablation study results of sum aggregator

Dataset	Metric	GS-GNN _{mean}	GS-GNN _{sum}	
	AUC	0.844	0.893	
Bitcoin-Alpha	Macro-F1	0.712	0.793	
Ditcom-Aipiia	Micro-F1	0.915	0.930	
	Binary-F1	0.954	0.961	
	AUC	0.900	0.915	
Bitcoin_OTC	Macro-F1	0.812	0.837	
Ditcolli-OTC	Micro-F1	0.914	0.920	
	Binary-F1	0.950	0.952	

Conclusion

□ Using the sum aggregator for positive and negative neighbors separately in signed graphs is important

Ablation Study Results

□ Question 3

Do both the global and local representation contribute to our proposed GS-GNN method?

Results

2	The	ablation	study	results	of	local	and	global	represe	entation
					-					

Dataset	Metric	GS-GNN _L	GS-GNN _G	GS-GNN
	AUC	0.875	0.889	0.893
Bitcoin-Alpha	Macro-F1	0.754	0.731	0.793
Dicom-Aipiia	Micro-F1	0.922	0.916	0.930
	Binary-F1	0.958	0.954	0.961
	AUC	0.891	0.906	0.915
Bitcoin-OTC	Macro-F1	0.801	0.786	0.837
Ditcom-OTC	Micro-F1	0.901	0.899	0.920
	Binary-F1	0.946	0.942	0.952

Conclusion

- Both modules contribute to GS-GNN
- The local and global representations of nodes are complementary

Parameter Sensitivities Results

Question 4

How do essential parameters affect the model?

Results

 $\hfill\square$ Varying the number of layers $\hfill \mathbf{M}_L$ in the local module

Conclusion

2 local layers is a suitable choice

Parameter Sensitivities Results

Question 4

□ How do essential parameters affect the model?

Results

 $\hfill\square$ Varying the number of layers \mathbf{M}_{G} in the golal module

□ 5 gobal layers is a suitable choice

Parameter Sensitivities Results

Question 4

How do essential parameters affect the model?

Results

□ Varying the number of groups *K*

Conclusion

□ Setting *K* from 3 to 5 leads to the best results

Conclusion

□ Study representation learning methods for signed graphs

- Most existing methods are based on balance theory, ignore its serious limitation
- □ We propose the k-group theory
 - a general and more realistic assumption beyond the usual balance theory

□ Propose a novel signed GNN with a dual architecture (GS-GNN)

- Simultaneously learn global and local representations.
 - □ fully leverage the k-group theory
 - with the flexibility to capture extra information beyond k-group theory
- Simple and effective

Extensive experimental results on synthetic and real signed graphs

- Demonstrate the superiority of our proposed assumption and method
- Achieves new state-of-the-art, to the best of our knowledge

Thanks!

Haixin Liu, Tsinghua University liu-hx20@mails.tsinghua.edu.cn

