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ABSTRACT
Signed graph representation learning is an effective approach to
analyze the complex patterns in real-world signed graphs with the
co-existence of positive and negative links. Most previous signed
graph representation learning methods resort to balance theory, a
classic social theory that originated from psychology as the core
assumption. However, since balance theory is shown equivalent to
a simple assumption that nodes can be divided into two conflicting
groups, it fails to model the structure of real signed graphs. To solve
this problem, we propose Group Signed Graph Neural Network (GS-
GNN) model for signed graph representation learning beyond the
balance theory assumption. GS-GNN has a dual GNN architecture
that consists of the global and the local module. In the global module,
we adopt a more generalized assumption that nodes can be divided
into multiple latent groups and that the groups can have arbitrary
relations and propose a novel prototype-based GNN to learn node
representations based on the assumption. In the local module, to
give the model enough flexibility in modeling other factors, we do
not make any prior assumptions, treat positive links and negative
links as two independent relations, and adopt a relational GNN to
learn node representations. Both modules can complement each
other, and the concatenation of two modules is fed into downstream
tasks. Extensive experimental results demonstrate the effectiveness
of our GS-GNN model on both synthetic and real-world signed
graphs by greatly and consistently outperforming all the baselines
and achieving new state-of-the-art results. Our implementation is
available in PyTorch1.
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1 INTRODUCTION
With the prevalence of social media, social interactions are cre-
ated every moment. People create positive relationships such as
friendships, agreements, and supports, as well as negative rela-
tionships such as foes, disagreements, and boycotts. For example,
most customer review sites allow users to express both positive and
negative comments. Signed graphs are popular data structures to
simultaneously represent these positive and negative relationships
by assigning signs to the links, i.e., co-existence of positive and
negative links. Compared with unsigned graphs, signed links can
reflect more complex social relationships [23].

To mine the rich value underlying graph data, graph representa-
tion learning techniques have been boosted recently. By learning a
low-dimensional representation for each node, various graph an-
alytical tasks such as node classification and link prediction can
be performed. Among different methods, graph neural networks
(GNNs) demonstrate great potentials by designing deep neural
networks in learning node representations. When generalizing
representation learning methods to signed graphs, modeling the
co-existence of positive and negative links becomes the principle de-
sign. Most existing GNNs for signed graphs [4, 5] resort to balance
theory, a well-known social theory originating from psychology,
in designing learning frameworks. In a nutshell, balance theory
indicates that “the foe of my foe is my friend” [10].

However, does balance theory perfectly model real signed
graphs? To answer this question, we find it has been shown [9, 12]
that balance theory is equivalent to a simple assumption that the
nodes can be partitioned into two groups and the signs of links are
completely determined by the group structure, i.e., nodes form posi-
tive links if they are in the same group and negative links if they are
in different groups. Clearly, such an assumption is too ideal for real
signed graphs. Taking social networks as examples, people form
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positive and negative links based on various reasons rather than 
a dichotomy. The existing signed graphs representation learning 
methods do not consider these complex relationships, thus failing 
to model the true underlying structure of real signed graphs. As 
a result, the performance of the learned representations in signed 
graph analytical tasks is seriously harmed.

A natural generalization to the balance theory is that there ex-
ist multiple groups underlying the signed graph structure [3, 29].
Taking one step further, the groups can also form complex rela-
tionships, i.e., not every two groups are in conflicts and only form
negative links. Such a generalized assumption can better model the
real underlying structure of signed graphs, which we term such as
the k-group theory. It is easy to see that the k-group theory includes
the balance theory as a special case when the number of groups
equals two and the two groups are in conflict.

Nevertheless, when adopting the k-group theory as the major
inductive bias in designing a representation learning method, we
should also give the model enough flexibility to accommodate other
factors such as the micro-structures within groups, influences of
node features, or even tolerate the randomness in people’s behaviors
or noises in the data. Such flexibility is critical since the observed
data may not perfectly fit the k-group theory, even when it is the
prime underlying mechanism of forming a signed graph. Otherwise,
the model can be easily affected by these other factors and fails to
discover the latent group structures.

Motivated by these analyses, we propose Group Signed Graph
Neural Network (GS-GNN), a novel signed GNN that goes beyond
the balance theory. Specifically, GS-GNN adopts a dual architec-
ture that learns two representations for each node. For the first
representation, we utilize the k-group theory and propose a novel
prototype-based GNN to jointly learn the representation for each
group and the affiliation of nodes to different groups. The repre-
sentation of a node is composed of a linear combination of the
group representations weighed by the node affiliations. Since this
representation depicts the node relationships with all the groups,
we name it the global representation of nodes. For the second repre-
sentation, we do not make any prior assumption on the generative
mechanism of signs and adopt a multi-relational GNN to model pos-
itive and negative links separately for node presentation learning.
It complements the global representation by capturing information
exceeding the k-group theory, e.g., structures within groups or in-
formation related to node features. Accordingly, we name such a
representation as to the local representation. Finally, we concatenate
the global and local representation to handle downstream tasks.
By adopting this decoupled dual architecture, GS-GNN can cap-
ture various latent factors and the complex generative mechanism
underlying the formation of signed graphs.

We conduct extensive experiments on four publicly available real
signed graphs for the link sign prediction task. The experimental re-
sults show that our proposed method significantly and consistently
outperforms all the existing methods, including signed network
embedding methods and signed GNNs. Experimental results on
simulation datasets and ablation studies further verify that the de-
sign of our method can indeed capture more complex structures
than the balance theory.

The main contributions of the paper are summarized as follows.

• We study representation learning methods for signed graphs us-
ing the k-group theory, a general and more realistic assumption
beyond the usual balance theory.

• We propose GS-GNN, a novel signed GNN with a dual architec-
ture to learn global and local representations simultaneously.
Our proposed method can fully leverage the k-group theory
and is flexible to capture extra information beyond the theory.

• Extensive experimental results on real signed graphs demon-
strate the superiority of our proposed method. GS-GNN out-
performs all the existing methods and achieves new state-of-
the-art, to the best of our knowledge.

2 RELATEDWORK
In this section, we review related works. First, we review graph rep-
resentation learning methods for unsigned graphs. Then, we review
signed graph representation learning methods based on the balance
theory and their relationships with the k-group theory. Finally, we
review other signed graph representation learning methods.

Graph representation learning techniques, which learn low-
dimensional vectors for nodes, have shown successes in various
graph analysis tasks, such as node classification [27], link predic-
tion [30], and network visualization [11]. Initial random-walk based
methods such as DeepWalk [26], LINE [28], andNode2vec [8] regard
nodes as words and generate random walks to preserve the graph
structure. Other works such as SDNE [30] and SDAE [1] adopt
deep neural networks and also achieve good performance. Recently,
graph neural networks (GNNs) based methods have become increas-
ingly popular [7, 18, 32, 37]. The message-passing framework [7] of
GNNs propagates and aggregates information between neighbors.
However, these methods are designed for unsigned graphs and thus
not directly applicable to signed graphs.

Most of the existing signed graph representation learning meth-
ods [4, 5, 16, 17, 22, 25, 31] are designed based on the balance
theory [10]. For example, SiNE [31] first learns signed network
embedding with an objective function guided by the balance theory.
SIDE [17] and SIGNet [15] use specifically designed random walks
to model the balance theory. SGCN [5] first utilizes GNNs to model
signed networks and uses the balance theory in designing the aggre-
gating strategy. Similarly, SNEA [25] uses the attention mechanism
to reveal the importance of neighbors and SGDN [16] uses feature
diffusion to take high-order neighbors into consideration.

As mentioned in [9], the balance theory is equivalent to a simple
assumption that the nodes can be partitioned into two conflicting
groups and the signs of links are completely determined by the
group structure. The weak balance theory is proposed in [2] and
considers more than two conflicting groups. Based on this assump-
tion, several signed graph clustering methods [3, 19] are proposed
to discover the signed graph partition. However, these methods all
assume the groups are all in conflicts. Besides, they do not utilize
the advantages of representation learning. To the contrary, our pro-
posed GS-GNN can utilize GNNs and also model arbitrary relations
between groups.

There are also signed representation learning methods [13, 14]
based on another theory, the social status theory [23]. However,
the social status theory is only applicable to directed signed graphs,
while we only consider undirected signed graphs in this paper.
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Figure 1: The overall framework of our GS-GNN model.

3 PROPOSED GS-GNN METHOD
3.1 Notations
First, we introduce some notations used throughout the paper.
We consider a signed graph G = (V, E+, E−) where V ={
𝑣1, 𝑣2, ..., 𝑣 |𝑉 |

}
denotes the set of nodes, E+ ⊆ V × V denotes

the positive links, and E− ⊆ V × V denotes the negative links.
E+⋂ E− = ∅, i.e., a link is either positive or negative. The nodes
also have input features denoted as 𝑋 ∈ R |𝑉 |×𝑑𝑖𝑛 , where 𝑑𝑖𝑛 is the
number of features. In Table 1, we summarize the main notations.

Table 1: Main notations used throughout the paper

Notations Descriptions

G A signed graph
V A set of nodes
E+ (E−) A set of positive (negative) links
N+
𝑖
(N−

𝑖
) The positive (negative) neighbors of node 𝑣𝑖

X An input features matrix
Z𝐺 ∈ R |𝑉 |×𝑑𝐿 The global embedding matrix of nodes
Z𝐿 ∈ R |𝑉 |×𝑑𝐺 The local embedding matrix of nodes
𝑑𝐺 (𝑑𝐿) The dimensionality of the global (local) embedding
Z = [Z𝐺 ,Z𝐿] The final embedding matrix of nodes
𝐾 The number of groups
Z𝐶 The embedding matrix of groups
S(𝑚) The assignment matrix of the𝑚𝑡ℎ global layer
𝑀𝐺 (𝑀𝐿) The number of layers in the global (local) module
W(𝑚)
𝐺

,W(𝑚) ′
𝐺

The weight matrices in the𝑚𝑡ℎ layer of the global
module

W(𝑚)
𝐿

(
𝑏
(𝑚)
𝐿

)
The weight matrix (bias vector) in the𝑚𝑡ℎ layer of
the local module

3.2 Overall Framework
The overall framework of GS-GNN is shown in Figure 1. The major
design of GS-GNN is that we use a dual architecture to learn a
global embedding matrix Z𝐺 ∈ R |𝑉 |×𝑑𝐺 and a local embedding
matrix Z𝐿 ∈ R |𝑉 |×𝑑𝐿 as the node representations. The global em-
bedding utilizes the k-group theory that signed graphs have a latent
k-group structure and the relations between groups are unknown.
On the other hand, the local embedding aims to incorporate the
individual information not captured by the k-group theory. Both
embeddings are learned with GNNs using specifically designed con-
volution layers. To keep it simple, we set the final embedding Z as
the concatenation of the local and global embeddings, though more
advanced methods such as using a gating or attention mechanism
can be explored in the future.

3.3 Global Signed Convolutional Module
Next, we explain the details for the global signed convolution mod-
ule and local signed convolution module, respectively. Finally, we
introduce our objective function.

The goal of the global signed convolution module is to discover
the latent community structure of signed graphs based on the k-
group theory. There are several challenges for designing such an
architecture. First, we need to model the complex relationships be-
tween groups beyond simple heuristic assumptions, e.g., all groups
are in conflict. Second, we need to represent nodes from the perspec-
tive of groups, i.e., discovering the affiliation between nodes and
groups. Lastly, we do not want to increase the number of parame-
ters and time complexity so that our model can apply to large-scale
graphs.

With the above goals in mind, we propose a novel prototype-
based GNN as our global signed convolutional module. The frame-
work is shown in Figure 2. We denote an embedding matrix for the
groups as ZC =

[
Z𝐶1 ,Z𝐶2 , ...,Z𝐶𝐾

]
∈ R𝐾×𝑑𝐺 , where Z𝐶𝑘 ∈ R𝑑𝐺
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Figure 2: The detailed designs of the global module in GS-GNN. There are four major steps. First, we initialize the assignment
matrix of nodes to different groups by transforming the node features into a latent space using an MLP and calculating the
attention score with the group embeddingmatrix. Second, we conductmessage-passing on the assignmentmatrix to propagate
the aggregate information from both positive and negative neighbors. Third, we fuse the received messages and update the
assignment matrix. After iterating steps two and three, i.e. multiple message-passing layers, we calculate the final global
embedding matrix as a linear combination of the group embedding using the assignment as weights.

is the embedding of the 𝑘𝑡ℎ group. Z𝐶 is randomly initialized and
then optimized through our learning framework. In this way, we
can freely model the relationships between different groups in the
hidden space using their embedding vectors. Then, by regarding
these group embeddings as prototypes, we can represent nodes
from the group view as a linear combination of the group embed-
dings. The weights for the combination are learned by a learnable
group assignment matrix. Similarly, graph pooling methods [21, 35]
designed for the unsigned graph classification task also adopt learn-
able assignment matrices. Specifically, we decompose the procedure
into the following four steps.

3.3.1 Assignment Initialization. The goal of this step is to gener-
ate the initial assignment probability of nodes to the 𝐾 groups.
We donate the initial assignment matrix as S(0) ∈ R |V |×𝐾

≥0 , where
S(0)
𝑣,𝐶𝑖

is the probability of node 𝑣 belong to the 𝑖𝑡ℎ group. To cal-
culate S(0) , we first transform the input node features into hidden
representations through a multilayer perceptron (MLP), i.e.,

X′
𝑣 = MLP(X𝑣),∀𝑣 ∈ V (1)

where X′
𝑣 ∈ R𝑑𝐺 . The parameters for different nodes are shared

in the MLP and the output dimensionality matches the group em-
bedding matrix. Next, we calculate the inner product, i.e., a simple
attention value Q(0)

𝑣,𝐶𝑖
between the representation of node 𝑣 and the

𝑖𝑡ℎ group embedding:

Q(0)
𝑣,𝐶𝑖

= Z𝑇𝐶𝑖X
′
𝑣 . (2)

We then normalize the initial attention values with the softmax
function to get the initial assignment probability

S(0)
𝑣,𝐶𝑖

=

exp
(
Q(0)
𝑣,𝐶𝑖

)
∑𝐾
𝑗=1 exp

(
Q(0)
𝑣,𝐶 𝑗

) . (3)

3.3.2 Assignment Propagation and Aggregation. Simply adopting
S(0) cannot model the complex relationships between nodes. Fol-
lowing the message-passing framework of GNNs, we next conduct
assignment propagation and aggregation to update the assignment

matrix while incorporating the neighborhood information of nodes.
In the message-passing mechanism, the aggregation function plays
an important role in obtaining high-quality representations. Pre-
vious works of signed GNNs usually adopt the mean aggregation
function [5, 13]. However, we find that the mean aggregation func-
tion cannot effectively model the complex neighborhood structure
of nodes in signed graphs. We show a toy example in Figure 3. We
can easily see that the neighborhoods of node 𝑎 and 𝑏 are differ-
ent. However, the mean aggregator cannot differentiate these two
cases and thus produce identical neighborhood messages. Similar
phenomenons are observed in unsigned GNNs and it is shown that
the sum aggregator can achieve the maximum expressiveness [32].
Therefore, we adopt the sum aggregator instead of the mean aggre-
gator in all our message-passing layers.

We aggregate positive and negative neighbors separately

p(𝑚)
𝑣 =

∑
𝑢∈N+

𝑣

S(𝑚−1)
𝑢 , n(𝑚)

𝑣 =
∑

𝑢∈N−
𝑣

S(𝑚−1)
𝑢 , (4)

where p(𝑚)
𝑣 and n(𝑚)

𝑣 denotes the information for node 𝑣 from
positive and neighbors neighbors in the𝑚𝑡ℎ layer, respectively.

Figure 3: A toy example when the sum aggregator outper-
forms themean aggregator. Though node 𝑎 and𝑏 have differ-
ent neighborhood structures, the mean aggregator cannot
differentiate these two nodes, while the sum aggregator can.
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3.3.3 Assignments Updating. After aggregating the messages from 
neighborhoods, we update the assignment matrix of node 𝑣 by fus-
ing three sources of information: the assignment matrix in the last 
layer, the information from positive neighbors, and the information 
from negative neighbors. Specifically, we set

S(𝑚)
𝑣 = F (𝑚)

(
S(𝑚−1)
𝑣 , p(𝑚)

𝑣 , n(𝑚)
𝑣

)
= softmax

(
𝜎

( [
S(𝑚−1)
𝑣 , p(𝑚)

𝑣 , n(𝑚)
𝑣

]
W(𝑚)′
𝐺

)
W(𝑚)
𝐺

) (5)

where W(𝑚)′
𝐺

∈ R3𝐾×𝑑hidden , W(𝑚)
𝐺

∈ R𝑑hidden×𝐾 are learnable
weight matrices, 𝑑hidden is the dimensionality of the hidden repre-
sentation, and 𝜎 is ac activation function. We empirically find that
additional bias terms do not lift the performance and thus remove
the bias terms to reduce the number of parameters.

3.3.4 Obtaining Global Representations. After repeating the steps
in Section 3.3.2 and Section 3.3.3 𝑀𝐺 times, i.e., adopting 𝑀𝐺
message-passing layers, we have obtained the final assignment
matrix S = S(𝑀𝐺 ) . We calculate the global representation of nodes

Z𝐺 = SZ𝐶 , (6)

i.e., the global representation is a linear combination of the group
embeddings Z𝐶 with weights defined in the assignment matrix S.

Notice that in the global signed convolutional module, the num-
ber of parameters is linear with respect to the number of groups 𝐾
and the dimensionality of hidden representations 𝑑𝐺 and 𝑑hidden,
but is not related to |V|.

3.4 Local Signed Convolutional Module
In the local module, we do not adopt any assumption on the re-
lations between positive and negative links. Instead, we simply
treat self connections, positive links, and negative links as three
independent relations. In this way, we can capture information not
modeled by the K-group theory, such as structures within each
group or information more related to node features. Such a module
is important to complement the global module, especially when the
real-world signed graphs do not strictly follow the K-group theory.

We also adopt message-passing layers in learning the local rep-
resentations. Specifically, we denote the hidden representation of
node 𝑣 in the𝑚𝑡ℎ layer of the local module as z(𝑚)

𝑣 . The node rep-
resentations are updated by aggregating information from neigh-
borhoods as follows.

h(𝑚)
𝑣 =

[∑
𝑢∈N+

𝑣

z(𝑚−1)
𝑢 ,

∑
𝑢∈N−

𝑣

z(𝑚−1)
𝑢

]
z(𝑚)
𝑣 = 𝜎

( [
z(𝑚−1)
𝑣 , h(𝑚)

𝑣

]
W(𝑚)
𝐿

+ b(𝑚)
𝐿

)
,

(7)

where h(𝑚)
𝑣 is the message of node 𝑣 by concatenating the infor-

mation from positive neighbors and negative neighbors,W(𝑚)
𝐿

and
b(𝑚)
𝐿

are learnable parameters for the local module, and 𝜎 (·) is the
activation function. Note that, the aggregating functions used in
the local module are also the sum function.

After conduct message-passing for 𝑀𝐿 layers, the final local
embeddings of nodes are

Z𝐿 =

[
z(𝑀𝐿)1 , z(𝑀𝐿)2 , ..., z(𝑀𝐿)|V |

]
. (8)

3.5 Objective Function and Discussions
Finally, we obtain the node embedding by concatenating global and
local embeddings

Z = [Z𝐺 ,Z𝐿] . (9)
It is easy to see that our model can be trained end-to-end for a
given task. In this paper, we adopt link sign prediction, which is a
widely adopted task in signed graph representation learning. Specif-
ically, link sign prediction is a binary edge classification problem.
Therefore, we use the binary cross-entropy (BCE) loss as follows.

LBCE = − 1
|E+ ∪ E− |

©­«
∑

(𝑢,𝑣)∈E+
log𝑝 (𝑢, 𝑣) +

∑
(𝑢,𝑣)∈E−

(1 − log𝑝 (𝑢, 𝑣))ª®¬ ,
(10)

where 𝑝 (𝑢, 𝑣) denotes the probability of node 𝑢 and 𝑣 forms an
link. We use another MLP as the predictor with node embeddings
as inputs:

𝑝 (𝑢, 𝑣) = Sigmoid (MLP ( [Z𝑢 ,Z𝑣])) . (11)
The final objective function L is defined as:

L = LBCE + 𝜆Lreg, (12)

whereLreg is the 𝐿2 regularization term and 𝜆 is a hyper-parameter
to control the weights of the regularization.

4 EXPERIMENTS
In this section, we conduct experiments to demonstrate the merits
of GS-GNN. We aim to answer the following questions:
• Q1: Can GS-GNN fully utilize the k-group theory and discover
the underlying structure of signed graphs?

• Q2: How does GS-GNN perform compared with other state-of-
the-art signed graphs representation learning methods?

• Q3: Do both the global and local representation contribute to
our proposed GS-GNN method and how do essential parameters
affect the model?

To answer Q1, we first conduct experiments on synthetic datasets.
Then, we compare GS-GNN with various baselines on four real
signed graphs to answerQ2. Finally, ablation studies and parameter
studies are reported to answer Q3.

Table 2: The statistics of datasets. We count each undirected
link once in calculating the number of links.

Datasets # Nodes # Links # Positive Links # Negative Links

Bitcoin-Alpha 3,775 14,120 12,721 1,399
Bitcoin-OTC 5,875 21,489 18,230 3,259
Slashdot 37,626 419,072 313,543 105,529
Epinions 45,003 616,031 513,851 102,180

4.1 Experimental Settings
4.1.1 Real-world Datasets. We adopt the following four public
signed graphs in our experiments:
• Bitcoin-Alpha2[20] and Bitcoin-OTC3[20] are two signed
graphs extracted from bitcoin trading platforms. Since bitcoin

2http://www.btc-alpha.com
3http://www.bitcoin-otc.com
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Table 3: The results of different methods on the synthetic dataset. 𝐾𝑆 is the ground-truth number of groups in generating the
synthetic graph and 𝐾 is the assumed number of groups, i.e., a hyper-parameter, in our GS-GNN and SPONGE.

Assumption Method 𝐾𝑆 = 2 𝐾𝑆 = 3 𝐾𝑆 = 4 𝐾𝑆 = 5 𝐾𝑆 = 6

Balance Theory SGCN 0.442 0.398 0.362 0.334 0.357
SGDN 0.791 0.682 0.612 0.530 0.495

K-Group

K=𝐾𝑆
SPONGE 0.983 0.989 0.990 0.990 0.989
GS-GNN 0.984 0.991 0.991 0.989 0.982

K=2 SPONGE 0.983 0.853 0.749 0.670 0.600
GS-GNN 0.984 0.991 0.988 0.984 0.889

K=6 SPONGE 0.463 0.662 0.848 0.940 0.989
GS-GNN 0.986 0.988 0.990 0.989 0.980

tradings are anonymous, people give trust or not-trust tags to
others in order to enhance security.

• Slashdot4[23] is a technology-related news website. Using the
Slashdot Zoo feature, users can create friend or foe relationships
with others.

• Epinions5[23] is a consumer review site with trust and distrust
relationships between users.

We use undirected versions of the datasets which are preprocessed
by SNEA [13], i.e., neglecting the directions of links. We summarize
the statistics of datasets in Table 2. We can see from the table that
the positive and negative links are highly imbalanced in real-world
signed graphs.

4.1.2 Task and Evaluation Metrics. Following previous works [5,
13], we adopt link sign prediction as our task, i.e., predicting the
polar of the given links. Specifically, we randomly split the edges
into a training set and a testing set with the ratio 8:2. For evaluation
metrics, since positive and negative links are imbalanced, we adopt
the following fourmetrics: area under curve (AUC), macro-averaged
F1 score (Macro-F1), micro-average F1 score (Micro-F1), and binary-
average F1 score (Binary-F1) [5]. For all the metrics, higher values
indicate better performance. We repeat all experiments five times
with random dataset splits and report the average results.

4.1.3 Baselines. We choose the following methods as baselines, in-
cluding one signed graph clustering method (SPONGE), two signed
network embedding methods (SLF, SIDE), one GNN method for
unsigned graphs (GCN), and three GNNs for signed graphs (SGCN,
SNEA, SGDN).
• SPONGE [3]: A k-way clustering method for signed graphs
based on a generalized eigen-problem. All clusters are assumed
to be in conflicts.

• SLF [33]: A signed network embedding method based on signed
latent factors.

• SIDE [17]: A signed network embedding method that adopts
random walks based on the balance theory.

• GCN [18]: A representative GNN originally designed for un-
signed graphs based on the message passing mechanism. We
neglect the signs of the links.

• SGCN [5]: It generalizes GCN to signed graphs by learning two
node representations based on the balance theory.

4http://www.slashdot.com
5http://www.epinions.com

• SNEA [13]: It adopts attention-based aggregators in message-
passing steps and is also based on the balance theory.

• SGDN [16]: It proposes a signed randomwalk diffusion method
to consider multi-hop neighbors, which is also based on the
balance theory.

For SPONGE, we make link sign prediction based on the cluster
assignments of nodes. For methods which are not trained in an
end-to-end fashion, we first obtain the node presentations and
then adopt a logistic regression as the classifier, as suggested in
these papers. For the rest of the baselines, we adopt the standard
end-to-end training.

4.1.4 Hyper-parameters. For SPONGE, we grid search the cluster
number from {2, 3, ..., 20}. For other baselines and our proposed GS-
GNN, we uniformly set the dimensionality of node representations
as 64 (for GS-GNN, it includes both modules, i.e., 𝑑𝐺 +𝑑𝐿 = 64). For
all the baselines, other hyper-parameters are set as suggested in
their papers. For our proposed method, we search the number of
layers from {2, 3, 4, 5} for the localmodule and from {2, 3, 4, 5, 6, 7, 8}
for the global module. We adopt the Adam optimizer with both the
learning rate and weight decay searched from {0.01, 0.005, 0.001}.
As no node feature is available, we follow previous works [13, 16]
and use the top 64-dimensional vectors of truncated Singular Value
Decomposition[6] as node features.

4.2 Results on Synthetic Dataset
Before reporting the results of real-world datasets, we first conduct
experiments on the synthetic dataset aiming to answer Q1, i.e.,
verifying our proposed GS-GNN can indeed model the underlying
k-group structures of signed graphs. We generate synthetic signed
graphs using the signed stochastic block model (SSBM)[34] as fol-
lows. A set of nodes V𝑆 are divided into a set of 𝐾𝑆 groups with
equal sizes, i.e., each group has |V𝑆 |

𝐾𝑆
nodes. Then, nodes within

the same group have a probability 𝑝pos to form a positive edge. All
groups are assumed to be in conflicts with each other and thus
nodes in different groups have a probability 𝑝neg to form a negative
edge. To further taking noises into consideration, the signs of all
the links have a probability 𝑝noise to be flipped. For the detailed
parameters for our adopted SSBM, we set the number of nodes as
|V𝑆 | = 3, 000, the number of groups 𝐾𝑆 is varied from {2, 3, 4, 5, 6},
𝑝pos = 0.05, 𝑝neg = 0.0125, and 𝑝noise = 0.01.

For brevity, we only adopt SPONGE [3], SGCN [5], and SNEA [13]
that are most competitive as the baselines in this setting. Since both
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Table 4: The results of link sign prediction on real-world signed datasets. The best results and the second-best results for each
dataset using each metric are in bold and underlined, respectively. The last column is the relative improvement of GS-GNN
compared to the best-performing baseline.

Dataset Metric SPONGE SLF SIDE GCN SGCN SNEA SGDN GS-GNN

Bitcoin-Alpha

AUC 0.513 0.847 0.797 0.806 0.858 0.866 0.840 0.893 +3.12%
Macro-F1 0.504 0.668 0.665 0.546 0.706 0.727 0.663 0.793 +9.08%
Micro-F1 0.901 0.819 0.824 0.902 0.864 0.873 0.894 0.930 +3.10%
Binary-F1 0.948 0.892 0.896 0.948 0.921 0.926 0.942 0.961 +1.37%

Bitcoin-OTC

AUC 0.700 0.873 0.828 0.845 0.871 0.863 0.863 0.915 +4.81%
Macro-F1 0.644 0.735 0.713 0.675 0.754 0.760 0.734 0.837 +10.13%
Micro-F1 0.763 0.828 0.820 0.875 0.850 0.858 0.871 0.920 +5.14%
Binary-F1 0.850 0.892 0.889 0.928 0.908 0.914 0.926 0.952 +2.59%

Slashdot

AUC 0.500 0.888 0.820 0.819 0.873 0.888 0.887 0.916 +3.15%
Macro-F1 0.432 0.772 0.725 0.670 0.760 0.769 0.769 0.812 +5.18%
Micro-F1 0.752 0.812 0.773 0.797 0.802 0.812 0.838 0.865 +3.22%
Binary-F1 0.861 0.867 0.840 0.875 0.859 0.868 0.896 0.915 +2.12%

Epinions

AUC 0.508 0.928 0.878 0.869 0.925 0.931 0.930 0.959 +3.01%
Macro-F1 0.474 0.795 0.746 0.685 0.800 0.819 0.819 0.865 +5.62%
Micro-F1 0.832 0.865 0.829 0.864 0.872 0.888 0.903 0.931 +3.10%
Binary-F1 0.908 0.915 0.891 0.922 0.920 0.931 0.942 0.961 +2.02%

our proposed GS-GNN and SPONGE have the number of groups 𝐾
as a hyper-parameter, we consider three settings: (1) The ground-
truth𝐾𝑆 is known to the method, i.e.,𝐾 = 𝐾𝑆 ; (2) We set the number
of groups as the smallest possible value of the ground-truth number,
i.e., 𝐾 = 2; (3) We set the number of groups as the largest possible
value of the ground-truth number, i.e., 𝐾 = 6. We only report the
results using Macro-F1 as the metric, while other metrics show
similar patterns.

The results are shown in Table 3. We have the following findings.
In all three settings, both GS-GNN and SPONGE greatly outperform
SGCN and SGDN. Recall that SGCN and SGDN are based on the
balance theory, and SPONGE and our GS-GNN are based on the
k-group theory. The results clearly show that balance theory fails
to model the generative mechanism of the synthetic dataset and the
k-group theory is strictly more general. Notice that even for 𝐾𝑆 = 2,
SPONGE and GS-GNN outperform SGCN and SGDN (though the
margins are smaller than other 𝐾𝑆 ), indicating that the previous
signed GNNs even cannot fully utilize the balance theory.

In the first setting, i.e., when the ground-truth 𝐾𝑆 is known, both
GS-GNN and SPONGE report nearly perfect results, demonstrating
that they can discover the underlying structure of the synthetic
dataset. Notice that SPONGE has assumed that all groups are in
conflicts and form negative links only, which is consistent with our
generative mechanism. On the other hand, GS-GNN does not have
such an assumption and only infer from the observed data.

In the second setting, i.e., when the number of groups is as-
sumed minimum, GS-GNN generally outperforms SPONGE. The
improvement of GS-GNN over SPONGE grows larger as there are
more ground-truth groups. Even when the number of ground-truth
groups is more than twice as many as the assumption in our model,
i.e.,𝐾𝑆 = 5 and𝐾 = 2, the performance of GS-GNN is nearly perfect.
The results indicate that SPONGE cannot discover more groups
than its assumption, while our proposed GS-GNN is much more
capable. We attribute this advantage to fusing the k-group theory

and representation learning, which greatly enhances the model
capacity. For example, when 𝐾 < 𝐾𝑆 , our proposed GS-GNN can
possibly learn to decompose different dimensions of one group
representation to model more than one group.

In the third setting, i.e., when the number of groups is assumed
maximum, GS-GNN again shows better performance compared to
SPONGE inmost cases. In this setting, the margin between GS-GNN
and SPONGE has a negative relation with the ground-truth number
of groups. The results indicate that SPONGE cannot function well
if its assumed groups outnumber the ground-truth. In contrast,
the results of GS-GNN are impressively stable, showing that our
proposed method is not sensitive to the setting of 𝐾 (more results
of parameter sensitivity on real graphs are provided in Section 4.5).

The above results well demonstrate the superiority of GS-GNN
in modeling the synthetic dataset and utilizing the k-group theory,
which is much more general than the usual assumption of balance
theory. Besides, GS-GNN even outperforms the SPONGE, which
uses the ground-truth group number as input.

4.3 Results on Real Graphs
Next, we present the experimental results on real signed graphs.
The performance of all the methods for the link sign prediction
task is shown in Table 4. We have the following observations. GS-
GNN consistently outperforms all the baselines on all datasets with
all evaluation metrics. On average, the improvement of GS-GNN
compared to the most competent baseline is approximately 5% and
in some cases, the improvement can be as large as 10%. The results
clearly demonstrate the superiority of GS-GNN and the importance
of extending the balance theory to the k-group theory as well as
jointly learning the global and local node representations.

Notice that the positive links and negative links are imbalanced
and thus different evaluation metrics focus on different aspects of
the prediction results. For example, though SNEA achieves impres-
sive results in terms of AUC and Macro-F1, SGDN and GCN report
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better results when we adopt Micro-F1 and Binary-F1. Nevertheless,
GS-GNN reports the best results in all aspects. The performance
gains of GS-GNN are especially significant in terms of Macro-F1.
Since Macro-F1 treats two classes equally and there are consider-
ably fewer negative links, the results indicate that GS-GNN can
better model the negative links, which are more vital information
sources in signed graphs.

The performance of a representative unsigned graph representa-
tion learning methods GCN is worse than our proposed GS-GNN ,
indicating that modeling the sign of links can be beneficial. How-
ever, GCN outperforms SGCN in some cases, showing that the
capability of SGCN is somewhat limited by the simple assumption
of balance theory.

SPONGE does not work as well as in the synthetic graph, espe-
cially in terms of the Macro-F1 metric. The results show that the
formation of real-world signed graphs is considerably more com-
plicated than in our synthetic graph. For example, the relationships
between different groups may be far more than simple conflicts.
Compared to SPONGE, our proposed GS-GNN has more freedom
to model such structures, thanks to the dual architecture of jointly
learning global and local representations and the integration of
k-group theory deep representation learning models.

4.4 Ablation Studies
4.4.1 The global and the local module. To verify our dual architec-
ture design of jointly learning the global and local representations,
we design two variants of GS-GNN . In GS-GNN𝐿 , we only learn
the local representation, Z𝐿 , as the final node representation, and
in GS-GNN𝐺 , we only utilize the global representation, Z𝐺 , for the
downstream task. Other experimental settings are the same as Sec-
tion 4.We only report the results on Bitcoin-Alpha and Bitcoin-OTC
for brevity in Table 5. Overall, both modules contribute to our pro-
posed GS-GNN, showing that the local and global representations
of nodes are complementary.

Table 5: The ablation study results of only using the global
and the local component of GS-GNN.

Dataset Metric GS-GNN𝐿 GS-GNN𝐺 GS-GNN

Bitcoin-Alpha

AUC 0.875 0.889 0.893
Macro-F1 0.754 0.731 0.793
Micro-F1 0.922 0.916 0.930
Binary-F1 0.958 0.954 0.961

Bitcoin-OTC

AUC 0.891 0.906 0.915
Macro-F1 0.801 0.786 0.837
Micro-F1 0.901 0.899 0.920
Binary-F1 0.946 0.942 0.952

4.4.2 The aggregation function. We also conduct ablation studies
on the adopted aggregation function. As analyzed in Section 3.3.2,
the sum aggregator is more expressive than the mean aggrega-
tor. To provide empirical analyses, we replace all the aggregation
functions in GS-GNN with the mean aggregator and name such
a method as GS-GNNmean. The results are shown in Table 6. GS-
GNN sum greatly outperforms GS-GNNmean, verifying our analyses

and demonstrating the importance of using the sum aggregator for
positive and negative neighbors separately in signed graphs.

Table 6: The ablation study results of using different aggre-
gators for GS-GNN.

Dataset Metric GS-GNNmean GS-GNNsum

Bitcoin-Alpha

AUC 0.844 0.893
Macro-F1 0.712 0.793
Micro-F1 0.915 0.930
Binary-F1 0.954 0.961

Bitcoin-OTC

AUC 0.900 0.915
Macro-F1 0.812 0.837
Micro-F1 0.914 0.920
Binary-F1 0.950 0.952

4.5 Parameter Sensitivities
In this section, we investigate the parameter sensitivities of our
GS-GNN. There are three important parameters in our proposed
method: the number of layers in the local module 𝑀𝐿 , the number
of layers in the global module 𝑀𝐺 , and the number of groups 𝐾 .
We conduct three controlled experiments to investigate the effects
of three parameters. For brevity, we only report the results on
Bitcoin-OTC and Bitcoin-Alpha.

4.5.1 The number of layers in the local module𝑀𝐿 . We fix𝑀𝐺 to
5, 𝐾 to 3, and vary 𝑀𝐿 from {2, 3, 4, 5, 6}. The results are shown
in Figure 4. Overall, 𝑀𝐿 = 2 is a suitable choice for both datasets,
indicating that we do not need a deep architecture for the local
module. A plausible reason for the performance decay as the local
module grows deeper is the over-smoothing problemwidely known
in GNNs [24, 36].We leave improving the local module using studies
to alleviate the over-smoothing problem as future works.

(a) Bitcoin-Alpha (b) Bitcoin-OTC

Figure 4: The parameter sensitivity results of varying𝑀𝐿 .

4.5.2 The number of layers in the global module 𝑀𝐺 . We fix 𝑀𝐿
to 2 and 𝐾 to 3, and vary 𝑀𝐺 from {2, 3, 4, 5, 6}. The results are
shown in Figure 5. Contrary to the local module, the performance
of GS-GNN increases as 𝑀𝐺 grows larger. We achieve the best
performance when𝑀𝐺 is approximately 5. The results show that a
deeper architecture is needed for the global module. As for why the
global module is not affected by the over-smoothing problem, we
attribute this merit to the design of a prototype-based GNN as the
global module, which has a mechanism different from the existing
GNNs.
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(a) Bitcoin-Alpha (b) Bitcoin-OTC

Figure 5: The parameter sensitivity results of𝑀𝐺 .

4.5.3 The number of groups 𝐾 . To better understand the effective-
ness of 𝐾 , we only adopt the global module here and fix𝑀𝐺 as 5,
and vary𝐾 from {2, 3, 4, 5, 6}. The results shown in Figure 6 suggest
a consistent pattern as in the synthetic graph that our proposed
GS-GNN is not sensitive to the setting of 𝐾 . In general, setting 𝐾
from 3 to 5 leads to the best results.

(a) Bitcoin-Alpha (b) Bitcoin-OTC

Figure 6: The parameter sensitivity results of 𝐾 .

5 CONCLUSION
In this paper, we propose a novel GS-GNN model for signed graph
representation learning beyond the usual balance theory assump-
tion. Specifically, we adopt a dual GNN architecture, with the global
module learning node representations based on the k-group theory,
a more generalized assumption than the balance theory, and the
local module complementing the global module using a relational
GNN with no prior assumption. Extensive experimental results
on both synthetic and real-world signed graphs demonstrate the
effectiveness of GS-GNN by achieving new state-of-the-art.
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A EXPERIMENTAL DETAILS FOR
REPRODUCIBILITY

A.1 Datasets and Codes
We adopt the following publicly available source codes and datasets.
• Datasets: https://github.com/liyu1990/data
• SPONGE [3]: https://github.com/alan-turing-institute/SigNet
• SLF [33]: https://github.com/WHU-SNA/SLF
• SIDE [17]: https://datalab.snu.ac.kr/side/resources/side.zip
• GCN [18]: https://github.com/tkipf/pygcn
• SGCN [5]: https://github.com/benedekrozemberczki/SGCN
• SNEA [13]: https://github.com/liyu1990/snea

• SGDN [16]: https://openreview.net/attachment?id=YPm0fzy_
z6R&name=supplementary_material

A.2 Software and Hardware Configurations
All experiments are conducted on a server with the following con-
figurations.

• Operating System: Ubuntu 18.04.1 LTS
• CPU: Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz
• GPU: GeForce GTX TITAN X
• Software: Python 3.7.9, Cuda 10.2, PyTorch 1.7.1, TenfowFlow
1.13.2
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