
Xin Wang, Ziwei Zhang, Wenwu Zhu

Tsinghua University

Automated Machine Learning on Graph

1

2

The general description of data and their relations.

Network (Graph)

3

Many types of data are networks

Social Networks Biology Networks Finance Networks

Internet of Things Information Networks Logistic Networks

4

Why network is important?

In few cases, you only care about a subject but not its

relations with other subjects.

Reflected by relational subjects Decided by relational subjects

Target

Target

Image Characterization Social Capital

Recommendation Systems
Link prediction in

bipartite graphs

Many applications are intrinsically network problems

5

Financial credit & risk management Node importance & classification

Many applications are intrinsically network problems

6

Many applications are intrinsically network problems

New material discovery Subgraph pattern discovery

7

8

Learning from networks

Network

Embedding
GNN

Automated Graph

Machine Learning

9

Learning from networks

Network

Embedding

10

G = (V, E) G = (V)
Vector Space

generate

embed

 Easy to parallel

 Can apply classical ML methods

Network Embedding

The ultimate goal

in Vector Space

Network Inference

• Node importance

• Community detection

• Network distance

• Link prediction

• Node classification

• Network evolution

• …

11

12

The goal of network embedding

Goal Support network inference in vector space

Reflect network

structure

Maintain network

properties

B

A C

Transitivity

Transform network nodes into vectors that are fit for

off-the-shelf machine learning models

Nodes & Links

Community Structures

Pair-wise Proximity

Hyper Edges

Global Structure

Network Structures

13

Dedicated Network Embedding Tutorial at KDD 2019:

http://cuip.thumedialab.com/papers/KDD19%20Tutorial%20on%20NE_Peng.pdf

 Capturing the underlying structure of networks

 Advantages:

 Solve the sparsity problem of network connections

 Measure indirect relationship between nodes

High-Order Proximity

14

DeepWalk

 Exploit truncated random walks to define neighborhoods of a node.

B. Perozzi et al. Deepwalk: Online learning of social representations. KDD 2014.

Random Walks on Graph

• 𝑉26 − 𝑉25 − 𝑉32 − 𝑉3 − 𝑉10…

• 𝑉5 − 𝑉7 − 𝑉17 − 𝑉6 − 𝑉11…

• 𝑉31 − 𝑉33 − 𝑉21 − 𝑉33 − 𝑉15

15

Jian Tang et al. LINE: Large-scale Information Network Embedding. WWW 2015.

LINE with Second-order Proximity:

neighborhood structures

LINE with First-order Proximity:

local pairwise

LINE

16

GraRep

Shaosheng Cao et al. GraRep: Learning Graph Representations with Global Structural Information. CIKM 2015.

capturing

different

k-step

information

maintaining

different

k-step

information

separately

1-step 2-step 3-step 4-step

Do not distinguish 1-step and 2-step

17

 Idea

 Challenges

⚫ How to represent network data in deep neural networks?

⚫ How to preserve the first and second-order proximity in deep neural networks?

Structural Deep Network Embedding

18

1

2

3

4

5

6Deep Neural NetworkNetworks

first-order

proximity

second-order

proximity

first-order

proximity

second-order

proximity

constrain

Deep Network Embedding Structural Network Embedding

solve non-linearity problem preserve structure

Daixin Wang, Peng Cui, Wenwu Zhu. Structural Deep Network Embedding. KDD, 2016.

Framework of SDNE

19

Unsupervised Autoencoder

(preserve second-order proximity)

Unsupervised Autoencoder

(preserve second-order proximity)

Supervised Constraint

(preserve first-order proximity)

Daixin Wang, Peng Cui, Wenwu Zhu. Structural Deep Network Embedding. KDD, 2016.

Similar neighborhoods

Similar adjacent vector

Similar embedding vector

Preserve second-order proximity

 Reconstruct the neighborhood structure of each vertex through deep autoencoder

𝐿2𝑛𝑑 =∥ ෠𝑋 − 𝑋 ⊙𝐵 ∥𝐹
2

20

…

…

…

…

𝒙𝒊

𝒚𝒊
𝟏

𝒚𝒊
𝑲

ෝ𝒚𝒊
𝟏

ෝ𝒙𝒊

𝒙𝒋

𝒚𝒋
𝟏

𝒚𝒋
𝑲

ෝ𝒚𝒋
𝟏

ෝ𝒙𝒋
…

…

…

…

parameter sharing

parameter sharing

node i’s adjacent vector node j’s adjacent vector

…

…

… …

…

…

original

space

embedding

space

reconstruction

space

adjacency

matrix

reconstruction of

adjacency matrix
balancing

weight

embed

reconstruct

Daixin Wang, Peng Cui, Wenwu Zhu. Structural Deep Network Embedding. KDD, 2016.

Preserve first-order proximity

 Incur penalty when connected vertexes are mapped far away in the embedding space

𝐿1𝑠𝑡 = ෍

𝑖,𝑗=1

𝑛

𝑎𝑖,𝑗 ∥ 𝑦𝑖 − 𝑦𝑗 ∥2
2

21

…

…

…

…

𝒙𝒊

𝒚𝒊
𝟏

𝒚𝒊
𝑲

ෝ𝒚𝒊
𝟏

ෝ𝒙𝒊

𝒙𝒋

𝒚𝒋
𝟏

𝒚𝒋
𝑲

ෝ𝒚𝒋
𝟏

ෝ𝒙𝒋

…

…

…

…

parameter sharing

parameter sharing

Vertex i Vertex j

…

…

… …

…

…

Laplacian

Eigenmaps

original

space

embedding

space

reconstruction

space

Connection between

the 𝑖-th and 𝑗-th vertex
The embedding of

the 𝑖(𝑗)-th vertex

Daixin Wang, Peng Cui, Wenwu Zhu. Structural Deep Network Embedding. KDD, 2016.

Algorithm
 Objective Function

 Algorithm

22

𝐿 = 𝐿2𝑛𝑑 + 𝛼𝐿1𝑠𝑡 + 𝜐𝐿𝑟𝑒𝑔

=∥ ෠𝑋 − 𝑋 ⊙𝐵 ∥𝐹
2 +𝛼 ෍

𝑖,𝑗=1

𝑛

𝑠𝑖,𝑗 ∥ 𝑦𝑖 − 𝑦𝑗 ∥2
2 +𝜐𝐿𝑟𝑒𝑔

second-order loss first-order loss

regularization term

Daixin Wang, Peng Cui, Wenwu Zhu. Structural Deep Network Embedding. KDD, 2016.

Experimental Results

23

The precision keeps at least 0.9

Improve at least 15%

Daixin Wang, Peng Cui, Wenwu Zhu. Structural Deep Network Embedding. KDD, 2016.

 Different networks/tasks require different high-order proximities

 E.g., multi-scale classification (Bryan Perozzi, et al, 2017)

 E.g., networks with different scales and sparsity

 Proximities of different orders can also be arbitrarily weighted

 E.g., equal weights, exponentially decayed weights (Katz)

What is the right order?

24

 Existing methods can only preserve one fixed high-order proximity

 Different high-order proximities are calculated separately

How to preserve arbitrary-order proximity while guaranteeing accuracy and efficiency?

→ What is the underlying relationship between different proximities?

……
Proximity1

Proximity2 Proximity3 Proximity4

Embedding1 Embedding2 Embedding3 Embedding4

Time consuming!

What is the right order?

25

Problem Formulation
 High-order proximity: a polynomial function of the adjacency matrix

𝑆 = 𝑓 𝐴 = 𝑤1𝐴
1 +𝑤2𝐴

2 +⋯+𝑤𝑞𝐴
𝑞

 𝑞: order; 𝑤1…𝑤𝑞: weights, assuming to be non-negative

 𝐴: could be replaced by other variations (such as the Laplacian matrix)

 Objective function: matrix factorization

min
𝑈∗,𝑉∗

𝑆 − 𝑈∗𝑉∗𝑇
𝐹

2

 𝑈∗, 𝑉∗ ∈ ℝ𝑁×𝑑: left/right embedding vectors

 d: dimensionality of the space

 Optimal solution: Singular Value Decomposition (SVD)

 𝑈, Σ, 𝑉 : top-d SVD results

𝑈∗ = 𝑈 Σ, 𝑉∗ = 𝑉 Σ

26

Ziwei Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018.

Eigen-decomposition Reweighting
 Eigen-decomposition reweighting

 Insights: high-order proximity is simply re-weighting dimensions!

𝐴 𝑋Λ
Eigen-decomposition

𝑆

Polynomial ℱ · Polynomial ℱ ·

𝑋ℱ ΛEigen-decomposition

Time Consuming!

Time Consuming!

Efficient!

Efficient!

Z. Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018.

𝑈∗ = 𝑈 Σ, 𝑉∗ = 𝑉 Σ

27

Ziwei Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018.

 Shifting across different orders/weights:

 Preserving arbitrary-order proximity

 Low marginal cost

 Accurate and efficient

Preserving Arbitrary-Order Proximity

Eigen-decomposition
𝑋Λ

……

Embedding1

Embedding2

Embedding3

Efficient!

Shifting

Embedding4

28

Ziwei Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018.

 Link Prediction

+200%+100%

Experimental Results

29

Ziwei Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018.

Section Summary

Nodes & Links

Community Structures

Pair-wise Proximity

Hyper Edges

Global Structure

Network

Characteristics

Application

Characteristics

30

Dedicated Network Embedding Tutorial at KDD 2019:

http://cuip.thumedialab.com/papers/KDD19%20Tutorial%20on%20NE_Peng.pdf

A Survey on Network Embedding

Peng Cui, Xiao Wang, Jian Pei, Wenwu Zhu. A Survey on Network

Embedding. IEEE TKDE, 2018.

32

Learning from networks

GNN

Graph Neural Networks

G = (V, E)

Can we design a learning mechanism to directly work on graphs?

?

34

 Basic idea: a recursive definition of states

 A simple example: PageRank: 𝑠𝑖 = 𝛼σ𝑗∈𝒩 𝑖

𝑠𝑗

𝑑𝑗
+

1−𝛼

𝑛

The First Graph Neural Network

F. Scarselli, et al. The graph neural network model. IEEE TNN, 2009.

35

Many GNNs have emerged since then

Picture credit to Thomas Kipf

36

How are GNNs compared with other NNs?

Picture credit to GraphSAGE (NIPS 17), PATCHY-SAN (ICML 16)

 Capture information from graph

neighborhoods

 Capture information from nearby

grids (i.e., a 2-D graph)

 Capture information from contexts

(i.e., a 1-D graph)

We need to exchange information within neighborhoods

 Formulation:

 h𝑖
(𝑙)

: representation of node 𝑣𝑖 in the 𝑙𝑡ℎ layer

 m𝑖
(𝑙): messages for node 𝑣𝑖 in the 𝑙𝑡ℎ layer by aggregating neighbor representations

Message-passing Framework

J. Gilmer, et al. Neural message passing for quantum chemistry. ICML, 2017.

W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs. NIPS, 2017.

 Main idea: averaging messages from direct neighborhoods

 Stacking multiple layers like standard CNNs:

 State-of-the-art results on node classification

38

Graph Convolutional Networks (GCN)

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. ICLR, 2017.

 Main idea: weight messages using attention mechanism

ℎ𝑖
𝑙+1 = 𝜌(෍

𝑗∈𝑁 𝑖
𝛼𝑖𝑗
𝑙 ℎ𝑗

𝑙)

39

Graph Attention Network (GAT)

Graph Attention Networks. ICLR, 2018.

40

 Some expected properties of GNNs:

 Trained end-to-end for downstream tasks

 Vs. network embedding: unsupervised representation learning to handle

various tasks

 Utilize node features and graph structures simultaneously

 Can handle real applications with data represented as graphs

Expected Properties of GNNs

G = (V, E)

Are existing

GNNs good

enough?

Outline

41

 Does GNN fuse feature and topology optimally?

 Technical challenges in real applications: robustness

Outline

42

 Does GNN fuse feature and topology optimally?

 Technical challenges in real applications: robustness

The intrinsic problem GCN is solving

43

Fusing topology and features in the way of smoothing features with

the assistance of topology.

N

N

N

d

N

d

X =

Revisiting Graph Neural Networks All We Have is Low-Pass Filters, arXiv 1905.09550

Understanding the Representation Power of Graph Neural Networks in Learning Graph Topology, NeurIPS 2019

 Theoretical analysis: node features as “true signal”, GNNs as a low-pass filtering

 Simplified GCN[1]: removing all non-linearity

𝐻 𝑙 = 𝑆𝑙𝐻 0

𝑆 = ෩𝐷−1/2 ሚ𝐴෩𝐷−1/2 = 𝐼 − ෨𝐿𝑆𝑦𝑚

 From graph signal processing, 𝑓′ = 𝑆𝑙𝑓 corresponds to a spectral filter [2]

𝑔 𝜆 = 1 − መ𝜆
𝑙

 GCNs are a special form of Laplacian smoothing for node features[3]

44

1. Simplifying Graph Convolutional Networks, ICML 2019

2. Revisiting Graph Neural Networks All We Have is Low-Pass Filters, arXiv 1905.09550

3. Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning, AAAI

The intrinsic problem GCN is solving

 When feature plays the key role, GNN performs good

 How about the contrary?

 Synthesis data: stochastic block model + random features

 DeepWalk greatly outperforms all the GCNs

 Recall the message-passing framework

 Initial node features provide important inductive bias!

45

Can GNNs Fully Preserve Graph Structures?

Method Results

Random 10.0

GCN-1 29.7

GCN-2 48.4

GCN-3 56.2

GCN-5 53.3

DeepWalk 99.9

Initialized as node features

Graph structures only provide

neighborhoods in aggregation

GCN-X: X number of layers

 A new perspective: treating GNNs as a type of (non-linear) dimensionality reduction

 A slightly modified framework:

 Three-steps

(1) Projecting graph structures into a subspace spanned by node representations in the last step

(2) The projected representations are linearly transformed followed by a non-linear mapping

(3) Repeat the process by using the new node representations as bases

 Why are the existing GNNs feature-centric?

→ The initial space is solely determined by node features!

46

A New Perspective to Understand GNNs

Ziwei Zhang, Peng Cui, Jian Pei, Xin Wang, Wenwu Zhu. Eigen-GNN: A Graph Structure Preserving Plug-in for GNNs. arXiv, 2006.04330.

Graph structures Previous bases Linear transform

Non-linear mapping

 Framework

X: node features; Q: top-d eigenvector of a graph structure matrix; 𝑓 ⋅ : a simple function such as normalization

 Experimental results:

Node classification Link Prediction Graph Isomorphism Test

47

Eigen-GNN: A Graph Structure Preserving Plug-in

Ziwei Zhang, Peng Cui, Jian Pei, Xin Wang, Wenwu Zhu. Eigen-GNN: A Graph Structure Preserving Plug-in for GNNs. arXiv, 2006.04330.

Union space of X and 𝑓(𝑄)

48

Permutation-equivariance of GNNs
 Permutation-equivariance property

 If we randomly permute the IDs of nodes while maintaining the graph structure, the

representations of nodes in GNNs should be permuted accordingly

 Pros:

 Guarantees that the representations of automorphic nodes are identical

 Automatically generalize to all the 𝑂(𝑁!) permutations when training with only one

permutation

 Most of the existing message-passing GNNs satisfy permutation-equivariance

Permutation-equivariant Node Embeddings

9

4

3

1

2
5

8

7

6
13

15

16

17
14

12

11

10

49

Permutation-equivariance vs. Proximity-aware
 However, permutation-equivariance and proximity-aware are conflicting

Position-aware graph neural networks. ICML 2019.

On the Equivalence between Positional Node Embeddings and Structural Graph Representations. ICLR 2020.

Structurally equivalent

But no proximity

Permutation-equivariant

Node Representations

Proximity-preserving

Node Representations

Conflict!

50

Unique Node Identifiers
 The key problem is we can only differentiate nodes with unique identifiers

 Theoretical analysis: unique node identifiers are one necessary condition for

GNNs to be universal approximation

What graph neural networks cannot learn depth vs width, ICLR 2020

51

Stochastic Message Passing (SMP)
 Assign stochastic features as node identifiers

 Gaussian features: associate with random projection literature

 A dual GNN architecture:

Ziwei Zhang, Chenhao Niu, Peng Cui, et al. A Simple and General Graph Neural Network with Stochastic Message Passing. arXiv, 2009.02562.

52

Theoretical Guarantee
 SMP can preserve node proximities

 SMP can recover the existing permutation-equivariant GNNs

 An adaptive GNN that maintains both proximity-awareness and

permutation-equivariance

Ziwei Zhang, Chenhao Niu, Peng Cui, et al. A Simple and General Graph Neural Network with Stochastic Message Passing. arXiv, 2009.02562.

Experimental Results

53

Ziwei Zhang, Chenhao Niu, Peng Cui, et al. A Simple and General Graph Neural Network with Stochastic Message Passing. arXiv, 2009.02562.

Outline

54

 Does GNN fuse feature and topology optimally?

 Technical challenges in real applications: robustness

Technical challenges in real applications

Research Application

Robustness Interpretability Applicability

Hot directions in computer vision:

Adversarial Explainable Scalable

55

Robustness in GNNs
 Adversarial attacks

 Small perturbations in graph structures and node attributes lead to great changes

 A serious concern for applying GNNs to real-world applications

56

Adversarial Attacks on Neural Networks for Graph Data, KDD 2018

Adversarial Attacks on GNNs
 Categories

 Targeted vs. Non-targeted

 Targeted: the attacker focus on misclassifying some target nodes

 Non-targeted: the attacker aims to reduce the overall model performance

 Direct vs. Influence

 Direct: the attacker can directly manipulate the edges/features of the target nodes

 Influence: the attacker can only manipulate other nodes except the targets

 Attacker knowledge:

57

Settings Parameters Predictions Labels Training Input

White-Box Attack (WBA) ✓ ✓ ✓ ✓

Practical White-box Attack (PWA) ✓ ✓ ✓

Restrict Black-box Attack (RBA) ✓

Robust Graph Convolutional Networks
 How to enhance the robustness of GNNs against adversarial attacks?

 Adversarial attacks in node classification

 Connect nodes from different communities to confuse the classifier

 Distribution vs. plain vectors

 Plain vectors cannot adapt to such changes

 Variances can help to absorb the effects of adversarial changes

 Gaussian distributions → Hidden representations of nodes

Dingyuan Zhu, Ziwei Zhang, Peng Cui, Wenwu Zhu. Robust Graph Convolutional Networks Against Adversarial Attacks. KDD, 2019.

58

The Framework of RGCN

Gaussian based representations:

variance terms absorb the effects of

adversarial attacks

Variance-based Attention:

Remedy the propagation

of adversarial attacks

Sampling process: explicitly

considers mathematical relevance

between means and variances

59

Dingyuan Zhu, Ziwei Zhang, Peng Cui, Wenwu Zhu. Robust Graph Convolutional Networks Against Adversarial Attacks. KDD, 2019.

Experimental Results
 Node Classification on Clean Datasets

 Against Non-targeted Adversarial Attacks

60

Dingyuan Zhu, Ziwei Zhang, Peng Cui, Wenwu Zhu. Robust Graph Convolutional Networks Against Adversarial Attacks. KDD, 2019.

Recap: Graph Neural Networks

61

 Message-passing framework of GNNs

 Frontiers:

 Does GNN fuse feature and topology optimally?

 Technical challenges in real applications: robustness

Deep Learning on Graphs: A Survey

Ziwei Zhang, Peng Cui, Wenwu Zhu. Deep Learning on Graphs:

A Survey. IEEE TKDE, 2020.

63

Learning from networks

Automated Graph

Machine Learning

64

Problems in Existing Graph Learning Methods
 Manually design architectures and hyper-parameters through trial-and-error

 Each task needs be handled separately

One-shot Graph Neural Architecture Search with Dynamic Search Space, AAAI 2021
Automated graph machine learning is critically needed!

65

A Glance of AutoML

Picture credit to Microsoft Azure Machine Learning AutoML

Design ML methods → Design AutoML methods

ML vs. AutoML

66

 Rely on expert knowledge

 Tedious trail-and-error

 Low tuning efficiency

 Limited by human design

 Free human out of the loop

 High optimization efficiency

 Discover & extract patterns and

combinations automatically

67

Automated Graph Learning

 Automated Machine Learning on Graph

 Graph Hyper-Parameter Optimization (HPO)

 Graph Neural Architecture Search (NAS)

 The key: Graph Structure!

G = (V, E)

Links

Various diverse graph

structures may place complex

impacts on graph HPO and

graph NAS

Challenge: Unique Graph ML Architecture

G = (V, E)

Data NN architecture Search Space

?

Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017

NAS-Bench-201 Extending the Scope of Reproducible Neural Architecture Search, ICLR 2020

NAS-Bench-NLP Neural Architecture Search Benchmark for Natural Language Processing, arXiv 2020

Challenge: Complexity and diversity of graph tasks

 No single method can perfectly handle all scenarios

69

B

A C

Transitivity

 Link Prediction

 Community Detection

 Node Classification

 Network Distance

 Node Importance

 Graph Classification

 Graph Matching

…

Various graph properties Various applications

High-order Proximity

Permutation-equivariance

Apple

Phone Banana

Non-transitivity

Various domains

70

Social Networks

WeChat: 1.2 billion monthly active users (Sep 2020)

Facebook: 2.8 billion active users (2020)

E-commerce Networks

 Millions of sellers, about 0.9 billion buyers, 10.6

trillion turnovers in China (2019)

Citation Networks

 133 million authors, 277 million publications, 1.1

billion citations (AMiner, Feb 2021)

Challenge: how to handle billion-scale graphs?

Challenge: Scalability

Outline

71

 Graph Hyper-parameter Optimization

 Graph Neural Architecture Search

 Automated Graph Learning Libraries

Outline

72

 Graph Hyper-parameter Optimization

 Graph Neural Architecture Search

 Automated Graph Learning Libraries

73

Hyper-Parameter Optimization

Data

Machine Learning Model
Optimal Hyper-parameter

Configuration

 Goal: automatically find the optimal hyper-parameters

 Formulation: bi-level optimization

 Challenge: each trial of the inner loop on graph is computationally expensive,

especially for large-scale graphs

74

AutoNE: Framework

Transfer the knowledge about optimal hyper-parameters

from sampled subgraphs to the original massive graph

Tu Ke, Jianxin Ma, Peng Cui, Jian Pei, and Wenwu Zhu.

AutoNE: Hyperparameter optimization for massive network embedding. KDD 2019.

75

AutoNE: Sampling Module

 Goal: sample representative subgraphs that share similar properties with the original large-scale graph

 Challenge: preserve diversity of the origin graph

 Method: multi-start random walk strategy

 Supervised: nodes with different labels

 Unsupervised: from different discovered communities, e.g., a greedy algorithm that maximizes modularity

76

AutoNE: Signature Extraction Module

 Goal: learn a vector representation for each subgraph so that knowledge can be transferred

 Challenge: learn comprehensive graph signatures

 Method: NetLSD [Tsitsulin et al. KDD18]

 Based on spectral graph theory, heat diffusion process on a graph ℎ𝑡 𝐺 = 𝑡𝑟 𝐻𝑡 = 𝑡𝑟 𝑒−𝑡𝐿 = σ𝑗 𝑒
−𝑡𝜆𝑗

77

AutoNE: Meta-Learning Module

 Goal: transfer knowledge about hyper-parameters of subgraphs to the original large-scale graph

 Assumption: two similar graphs have similar optimal hyper-parameter

 Method: Gaussian Process based meta-learner

AutoNE: Experiments

Sampling-Based Graph ML Factorization-Based Graph ML

Graph Neural Networks Large-Scale Graphs

e-AutoGR: Overview
79

Transfer the knowledge about optimal hyperparameters from the sub-

graphs to the original graph in an explainable way

Wang Xin, Shuyi Fan, Kun Kuang, and Wenwu Zhu. Explainable Automated Graph

Representation Learning with Hyperparameter Importance. ICML 2021.

80

 Goal: sample representative subgraphs that share similar properties with the original large-scale

graph, similar to AutoNE.

 Challenge: preserve diversity of the origin graph

 Method: multi-start random walk strategy

 Supervised: nodes with different labels

 Unsupervised: from different discovered communities, e.g., a greedy algorithm that maximizes modularity

e-AutoGR: Overview

81

 Goal: Extract explainable graph features that can measure similarities.

 Six explainable graph features

 Number of nodes: |V|

 Number of edges: |E|

 Number of triangles

 Similarity: Canberra Distance 𝑔𝑖 = 𝑑 (𝑓𝑖 , 𝑓) = σ𝑘=1
6 |𝑓𝑘

𝑖−𝑓𝑘|

|𝑓𝑘
𝑖|+|𝑓𝑘|

 Global clustering coefficient:
3∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠

 Maximum total degree value

 Number of components

e-AutoGR: Sampling Module

e-AutoGR: Explainable Feature Extraction Module

82

 Goal: Learn performance function on small sampled graphs and predict on the

origin massive graph in an explainable manner

 Method:

 Adopt explainable graph features

 Decorrelate the correlations between different hyper-parameters given explainable graph

features when learning the performance function

e-AutoGR: Algorithms

83

84

e-AutoGR: Experiments

e-AutoGR: Experiments

85

JITuNE

86

JITuNE: Just-In-Time Hyperparameter Tuning for Network Embedding Algorithms. arXiv 2021.

 Hierarchical Synopsis: multi-level hierarchical architecture of network

 Vs. sampling in AutoNE and eAutoGR:
 Better time-constrained hyperparameter tuning

 Direct transfer without the meta-learning process

HESGA-TSM

87

A Genetic Algorithm with Tree-structured Mutation for Hyperparameter Optimisation of Graph Neural Networks. arXiv 2021.

 Optimization: genetic algorithm

 Hierarchical evaluation

 Fast evaluation to select candidates

 Reduce training epochs

 Full evaluation: fully train candidates

models and test on validation set

 Tradeoff between efficiency and

effectiveness

HESGA-TSM

88

A Genetic Algorithm with Tree-structured Mutation for Hyperparameter Optimisation of Graph Neural Networks. arXiv 2021.

 Tree-structure Mutation

AutoGM

89

Autonomous Graph Mining Algorithm Search with Best Speed/Accuracy Trade-off. CIKM 2020.

 A unified framework for graph learning algorithms

 Five hyper-parameters:.

 Dimension 𝑑: The dimensionality of the messages

 Length 𝑘: The size of neighborhood

 Width 𝑤: The number of message passing steps.

 Non-linearity 𝑙: The nonlinearity in the message passing

 Aggregation strategy 𝑎: How to aggregate messages

 Algorithm: Bayesian optimizatopn

Spoiler: very similar to search

space of graph NAS (using

HPO methods)

Outline

90

 Graph Hyper-parameter Optimization

 Graph Neural Architecture Search

 Automated Graph Learning Libraries

Neural Architecture Search (NAS)

91

 Goal: automatically learn the best neural architecture

 Categorization

FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search, CVPR 2019

Neural Architecture Search A Survey, JMLR 2019

Graph NAS Search Space: Message-passing Framework

92

 Message-passing framework of GNNs

 h𝑖
(𝑙)

: the representation of node 𝑣𝑖 in the 𝑙𝑡ℎ layer

m𝑖
(𝑙)

: the received message of node 𝑣𝑖 in the 𝑙𝑡ℎ layer

 All these choices can be searched

messages

Neural message passing for quantum chemistry. ICML, 2017.

 Micro search space:

 Aggregation function AGG(⋅): how to aggregate information from neighbors

 Requirement: not depending on orders (i.e., neighbors are regarded a set instead of a sequence)

 Common choices: mean, max, sum, etc.

 Aggregation weights 𝑎𝑖𝑗: the importance of different neighbors

 Combining function COMBINE ⋅ : how to update representation

 Common choices: CONCAT, SUM, MLP, etc.

 Non-linearity 𝜎(⋅): Sigmoid, ReLU, tanh, etc.

 Dimensionality of ℎ𝑖
𝑙

, the number of attention heads (when using attention)

Graph NAS Search Space: Micro

93

Graph Neural Architecture Search, IJCAI 2020.

 Macro search space: how to arrange different layers

 Residual connection, dense connection, etc.

 Formulation:

 ℱ𝑗𝑙: connectivity pattern from 𝑗𝑡ℎ to the 𝑙𝑡ℎ layer

 ZERO (not connecting), IDENTITY (residual connection), MLP, etc.

Graph NAS Search Space: Macro

94

DeepGCNs: Can GCNs Go as Deep as CNNs? ICCV 2019

Graph Neural Architecture Search, IJCAI 2020.

 Other search spaces

 Pooling methods:

 Aggregate node-level representation into graph-level representation

 Hyper-parameters: similar to HPO for graphs

 Number of layers, number of epochs, optimizer, dropout rate, etc.

 Spaces for specific tasks:

 E.g., spatial-temporal graph operators

95

AutoSTG Neural Architecture Search for Predictions of Spatio-Temporal Graphs, WWW 2021

Graph NAS Search Space: Pooling

 Most previous general NAS search strategies can be directly applied

 Controller (e.g., RNN) + Reinforcement learning (RL)

 Evolutionary

 Differentiable

 Controller samples architecture (e.g., as a sequence)

 RL feedback rewards (e.g., validation performance) to update the controller

96

Neural Architecture Search with Reinforcement Learning, ICLR 2017

Graph NAS Search Strategy

 Most previous general NAS search strategies can be directly applied

 Controller (e.g., RNN) + Reinforcement learning (RL)

 Evolutionary

 Differentiable

97

Evolutionary Neural Architecture Search (NAS) Using Chromosome Non-Disjunction for Korean Grammaticality Tasks, Applied Science 2020

 Need to define how to sample

parents, generate offspring, and

update populations
 E.g., remove the worst individual (Real, et

al., 2017), remove the oldest individual

(Real, et al., 2018), or no remove (Liu, et

al., 2018)

Graph NAS Search Strategy

 Most previous general NAS search strategies can be directly applied

 Controller (e.g., RNN) + Reinforcement learning (RL)

 Evolutionary

 Differentiable

 Generate a super-network to combine operations of the search space

 Continuous relaxation to make the model differentiable

98

DARTS: Differentiable Architecture Search, ICLR 2019

Graph NAS Search Strategy

Graph NAS Performance Estimation

99

 Low-fidelity training

 Reduce number of epochs

 Reduce training data: sample subgraphs as in HPO

 Inheriting weights

 Challenge: parameters in graph ML (e.g., GNNs) are unlike other NNs

 E.g., constraints by AGNN (Zhou et al., 2019)

 Same weight shapes

 Same attention and activation functions

 Weight sharing in differentiable NAS with one-shot model

NAS for Graph Machine Learning

100

 Summary of NAS for graph ML

Graph NAS Example: GraphNAS

101

 Search space: micro + macro

 Search strategy: RNN controller + RL

 GNN architecture description: a sequence of choices

 No parameter sharing

Graph Neural Architecture Search, IJCAI 2020

Graph NAS Example: GraphNAS

102

Graph Neural Architecture Search, IJCAI 2020

 Outperforms the existing manually designed architectures

Graph NAS Example: GraphNAS

103

Graph Neural Architecture Search, IJCAI 2020

 The optimal architectures differ across different datasets

Graph NAS Example: AutoGNN

104

 Search space: micro

 Search strategy: reinforced conservative controller + RL

 Conservative Explorer: maintain the best neural architecture found so far

 Guided Architecture Modifier: modify the best architecture found so far via selecting and mutating

the action classes

Auto-GNN Neural Architecture Search of Graph Neural Networks, arXiv 2019

Graph NAS Example: AutoGNN

105

 Performance estimation: constrained parameter sharing

Three constraints:

 Same tensor shapes

 Same attention and activation functions

 Skip connections and batch normalization do not share

Auto-GNN Neural Architecture Search of Graph Neural Networks, arXiv 2019

106

Graph NAS Example: AutoGNN

Auto-GNN Neural Architecture Search of Graph Neural Networks, arXiv 2019

107

Graph NAS Example: SANG

Simplifying Architecture Search for Graph Neural Network, CIKM 2020 workshop

 Search space: micro + macro

 Search strategy: RNN + RL

108

Graph NAS Example: SANG

Simplifying Architecture Search for Graph Neural Network, CIKM 2020 workshop

 A caution of search space: trade-off between effectiveness and efficiency

 Alternate the search space using domain knowledge and trial-and-errors

Graph NAS Example: AutoGraph

109

 Previous RL based NAS: a fixed number of layers

 Search space: micro + macro

 Search strategy: evolution

 A special “Layer Add” operation

→ A flexible number of layers

AutoGraph: Automated Graph Neural Network, ICONIP 2020

Graph NAS Example: AutoGraph

110

AutoGraph: Automated Graph Neural Network, ICONIP 2020

111

Graph NAS Example: AutoGraph

AutoGraph: Automated Graph Neural Network, ICONIP 2020

112

Graph NAS Example: NASGNN

Neural Architecture Search in Graph Neural Networks, BRACIS 2020

 Search space: micro + macro

 Search strategy: aging evolution (Real et al., AAAI 2019), RL, random search

113

Graph NAS Example: Genetic-GNN

Evolutionary Architecture Search for Graph Neural Networks, arXiv 2020

 Search space: micro + hyper-parameters

 Search strategy: alternating evolution process between GNN architectures and

learning hyper-parameter

Graph NAS Example: Stacked MPNN

114

 Previous graph NAS: focus on node classification

 Molecular property prediction: graph-level tasks

 Search space: micro + macro + pooling

 Choices: global pool, global gather, global attention pool, global attention sum pool, flatten

 Search strategy: regularized evolution

 Experiments:

Graph Neural Network Architecture Search for Molecular Property Prediction, IEEE BigData 2020

Graph NAS Example: DSS

115

 Search space: micro

 Search strategy: differentiable

One-shot Graph Neural Architecture Search with Dynamic Search Space, AAAI 2021

Graph NAS Example: DSS

116

 Dynamic search space: only the top-K operations are kept after an iteration

 Basic idea: if an operation is ranked lower than the other in a subset, it is ranked lower in the universe.

One-shot Graph Neural Architecture Search with Dynamic Search Space, AAAI 2021

Graph NAS Example: DSS

117

 Competitive performance to existing GNN NAS approaches with up to 10x speedup

One-shot Graph Neural Architecture Search with Dynamic Search Space, AAAI 2021

Graph NAS Example: PDNAS

118

 Search space: micro + macro

 Search algorithm: differentiable

Probabilistic Dual Network Architecture Search on Graphs, arXiv 2021

Graph NAS Example: EGAN

119

 Search space: micro + macro

 Search strategy: one-shot differentiable

 Large-scale graphs: sample subgraphs as proxies (similar to AutoNE and eAutoGR)

Efficient Graph Neural Architecture Search, OpenReview 2020

Graph NAS Example: SANE

120

 Node aggregator: similar to the micro space

 Search how to aggregate neighborhoods

 Layer aggregator: similar to the macro space

 Search how to aggregate different layers

 Candidate operations:

Search to aggregate neighborhood for graph neural network, ICDE 2021

Graph NAS Example: SANE

121

Search to aggregate neighborhood for graph neural network, ICDE 2021

Graph NAS Example: SANE

122

Search to aggregate neighborhood for graph neural network, ICDE 2021

Graph NAS Example: AutoSTG

123

AutoSTG Neural Architecture Search for Predictions of Spatio-Temporal Graphs, WWW 2021

 Tasks: NAS for spatial-temporal graphs

 Typical example: traffic prediction, time-series prediction, etc.

Graph NAS Example: AutoSTG

124

AutoSTG Neural Architecture Search for Predictions of Spatio-Temporal Graphs, WWW 2021

 Search space: spatial convolution (SC) and temporal convolution (TC)

 Spatial convolution: diffusion convolution

 Temporal convolution:

 Zero: not connection

 Identity: for residual connections

 Search strategy: differentiable + meta learning to generate weight parameters of SC and TC

 Graph Meta Knowledge Learner: improves upon a previous work (Pan et al., KDD 2019)

Graph NAS Example: AutoSTG

125

AutoSTG Neural Architecture Search for Predictions of Spatio-Temporal Graphs, WWW 2021

Graph NAS Example: AutoSTG

126

AutoSTG Neural Architecture Search for Predictions of Spatio-Temporal Graphs, WWW 2021

Graph NAS Example: AutoSTG

127

AutoSTG Neural Architecture Search for Predictions of Spatio-Temporal Graphs, WWW 2021

 GNNs are widely used in skeleton-based action recognition

 However, all the existing methods are manually designed

 A general framework

 Search space:

 Spatial convolution: 𝜙,𝛹 as channel-wise convolution filters

 Temporal convolution: 𝜙,𝛹 as temporal convolution filters

 Search algorithm:

modified from CEM-RL

(Pourchot and Sigaud,

ICLR 2019)

Graph NAS Example: Skeleton-based Action Recognition

128

Learning Graph Convolutional Network for Skeleton-based Human Action Recognition by Neural Searching, AAAI 2020

 A new GNN paradigm: feature filtering + neighbor aggregation

 Feature filtering: gating mechanism to control the information flow

 Sparse filter: ℱ𝑠 𝐻 = 𝑄𝐻,𝑄 = 𝑑𝑖𝑎𝑔 ℳ𝑄 𝐻,𝐻𝑖𝑛

 Dense filter: ℱ𝑑 𝐻 = 𝑍⊙𝐻, 𝑍 = ℳ𝑍 𝐻,𝐻𝑖𝑛
 Identity filter: ℐ 𝐻 = 𝐻

 Neighborhood aggregation: mean, max, sum

Graph NAS Example: GNAS

129

Rethinking Graph Neural Architecture Search from Message-passing, CVPR 2021

 Search space:

 Atomic operations: feature filtering and neighbor aggregation

 Cell architecture: DAG + only one neighbor aggregation per path

 Nodes only exchange information with first-order neighborhoods

 Three-level search space: DAG + neighborhood aggregation + DAG

130

Graph NAS Example: GNAS

Rethinking Graph Neural Architecture Search from Message-passing, CVPR 2021

131

 Overall framework
Graph NAS Example: GNAS

Rethinking Graph Neural Architecture Search from Message-passing, CVPR 2021

132

 Algorithm: adaptively select depth

Graph NAS Example: GNAS

Rethinking Graph Neural Architecture Search from Message-passing, CVPR 2021

133

 Consider quantisation in GNNs

 Quantisation: reduce computation and memory cost

Graph NAS Example: LPGNAS

Learned low precision graph neural networks, 2021 EuroMLSys workshop

134

 Search space: micro + macro + quantisation

 Search strategy: differentiable

Graph NAS Example: LPGNAS

Learned low precision graph neural networks, 2021 EuroMLSys workshop

135

Graph NAS Example: LPGNAS

Learned low precision graph neural networks, 2021 EuroMLSys workshop

136

Graph NAS Example: Design Space

Design Space for Graph Neural Networks, NeurIPS 2020

 A systematic study of GNN design space and task space

137

Graph NAS Example: Design Space

Design Space for Graph Neural Networks, NeurIPS 2020

 Key results:

138

Graph NAS Example: Design Space

Design Space for Graph Neural Networks, NeurIPS 2020

 Key results:

AutoAttend: Overview

139

Design self-attention models automatically by searching for

the best attention representations

Guan Chaoyu, Xin Wang and Wenwu Zhu.

AutoAttend: Automated Attention Representation Search. ICML 2021.

140

 How to define the most suitable search space?

 Joint optimization of attention representation and other functional components

 The search space should be flexible and expressive

 Relatively low complexity and high feasible architecture density

 How to consider the special characteristics of each sub-architecture in

parameter sharing?

 Parameters of key, query, value, and common feature extraction operations have

different functionalities

AutoAttend: Challenges

141

AutoAttend: Search Space Design

 Attention layer is defined to allow

model to have attention aggregation

 A set of layers with optional

connections between any two layers

142

AutoAttend: Improve Density

 Skeleton constraint: each layer must have one connection to its previous layer

 Key-Value Constraint: the key and value should have the same input layer

 Non-Zero Constraint: the important connections should not be zero

143

AutoAttend: Context-aware Parameter Sharing
One-shot super-net based optimization relaxation

 Share parameters according to their contexts

 Evolutionary search for best architectures

144

AutoAttend: Experiments

 Considerable improvement for natural language processing and graph

representation learning tasks

145

AutoAttend: Ablation Studies

 Using attention layer and considering both the input layer and

output layer can increase performance

 Ablation studies on the attention layer and context-aware parameter sharing strategies

Outline

146

 Graph Hyper-parameter Optimization

 Graph Neural Architecture Search

 Automated Graph Learning Libraries

 Graph related

AutoML library on Graph

147

 AutoML related

Auto eras
Gap!

Introduction – AutoGL

148

AutoGL

Open source Easy to use Flexible to be extended

https://mn.cs.Tsinghua.edu.cn/AutoGL

https://github.com/THUMNLab/AutoGL

 We design the first autoML framework & toolkit for machine learning on graphs

Modular Design

149

 Key modules:

 AutoGL Dataset: manage graph datasets

 AutoGL Solver: a high-level API to control the overall pipeline

 Five functional modules:

 Auto Feature Engineering,

 Neural Architecture Search,

 Hyper-parameter Optimization

 Model Training

 Auto Ensemble

Feature Engineering

150

Feature

Engineering

Node-level

Graph-

level

Generators

Selectors

Graphlet, EigenGNN,

Pagerank, Onehot, …

Pyg.transform

Filter, GBDT, …

Netlsd

NetworkX

Neural Architecture Search

151

151

Neural

Architecture

Search

Algorithms

Search

Space

Random

One-Shot
ENAS

GraphNas

Single Path

Macro

Micro

RL

Darts

Vanilla RL

GraphNAS

Hyper-Parameter Optimization

152

Hyper-Parameter

Optimization

General-

Purpose

Graph Aware AutoNE

Random

Grid

Anneal

Bayes

CAMES

TPE

Model Training

153

Trainer Model
• Learning rate

• Epochs

• Optimizer

• Loss

• Early Stopping

…

• Forward

• Ops & Architectures

• Dropout & Hidden

…

Currently supported models

 Node classification

 Link Prediction

 Graph classification

Ensemble
154

voting stacking

Meta-learner

Example Results

155

AutoGL Plans
Incoming new features:

 DGL backend

 More large-scale graph support

 E.g., sampling, distributed, etc.

 More graph tasks

 E.g., heterogenous graphs, spatial-temporal graphs, etc.

Warmly welcome all feedbacks and suggestions!

Contact: autogl@tsinghua.edu.cn

156

mailto:autogl@tsinghua.edu.cn

Section Summary

158

 Graph Hyper-parameter Optimization

 Graph Neural Architecture Search

 Automated Graph Learning Librawries

 Open Problems:

 Graph models for AutoML

 E.g., regard NN as Directed Acyclic Graph (DAG)

 E.g., using GNNs as surrogate models

 Robustness and explainability

 Hardware-aware models

 Comprehensive evaluation protocols

159

Automated Graph Learning Survey

Ziwei Zhang, Xin Wang, Wenwu Zhu.

Automated Machine Learning on Graphs: A Survey. IJCAI 2021.

Paper collection: https://github.com/THUMNLab/awesome-auto-graph-learning

Summary

160

Network

Embedding
GNN

Automated Graph

Machine Learning

 Learn vectorized representation of nodes/graphs

 Preserve structures and properties

 End-to-end learning paradigms on graphs

 Balance structures and attributes/features

 The automation of designing learning algorithms on graphs

 Handle large-scale and complicated graph structures

Thanks!

Xin Wang

xin_wang@tsinghua.edu.cn
http://mn.cs.tsinghua.edu.cn/xinwang/

161

Ziwei Zhang
zwzhang@tsinghua.edu.cn

https://zw-zhang.github.io/

Wenwu Zhu
wwzhu@tsinghua.edu.cn

