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Network (Graph)

The general description of data and their relations.



Many types of data are networks

Social Networks Biology Networks Finance Networks
Internet of Things Information Networks Logistic Networks
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Why network is important?

In few cases, you only care about a subject but not its
relations with other subjects.

Image Characterization Social Capital
= Target
X 9

Target

Reflected by relational subjects Decided by relational subjects
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Many applications are intrinsically network problems

Recommendation Systems

Link prediction in
bipartite graphs

tern-similarity

friendship
iterr-similarity |

rity -

friendship



Many applications are intrinsically network problems

Financial credit & risk management Node importance & classification

COLLATERAL




Many applications are intrinsically network problems

Subgraph pattern discovery

New material discovery

Materials discovery engine concept
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Network Embedding

G=(V,E) o (v)

Vector Space
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o Easy to parallel

o Can apply classical ML methods



The ultimate goal

Network Inference
P *f ‘ Node importance
e h A Community detection
“ Network distance
Link prediction
....;" Node classification

LK Network evolution

In Vector Space



The goal of network embedding

[ Goal Support network inference in vector space ]
Reflect network Maintain network
structure properties

e »

Transitivity
Transform network nodes into vectors that are fit for

off-the-shelf machine learning models



Network Structures

Nodes & Links
¥
Pair-wise Proximity

¥

Community Structures

¥
Hyper Edges

-

Global Structure

Dedicated Network Embedding Tutorial at KDD 2019:
http://cuip.thumedialab.com/papers/KDD19%20Tutorial%200n%20NE_Peng.pdf



High-Order Proximity

1 Capturing the underlying structure of networks

1 Advantages:

1 Solve the sparsity problem of network connections
1 Measure indirect relationship between nodes



DeepWalk

1 Exploit truncated random walks to define neighborhoods of a node.

Random Walks on Graph
V26 _ V25 - V32 - VS _ VlO---
Ve =V —Vig — Vo — Viq ...
V31 _ V33 - V21 - V33 - V15

B. Perozzi et al. Deepwalk: Online learning of social representations. KDD 2014.



LINE with First-order Proximity:
local pairwise

S
I

_ z Wi lugp1 ('Uip l'j)

LINE with Second-order Proximity:
neighborhood structures

Oy = Z Aid(p2(-|vi), p2(-|vi))

1cV

Jian Tang et al. LINE: Large-scale Information Network Embedding. WWW 2015,



GraRep

capturing
different
k-step
information

1-step 2-step 3-step 4-step

maintaining
different
k-step
information
separately

Do not distinguish 1-step and 2-step

Shaosheng Cao et al. GraRep: Learning Graph Representations with Global Structural Information. CIKM 2015.



Structural Deep Network Embedding

Networks

=

Deep Neural Network

Deep Network Embedding

0 Challenges

preserve structure:

first-order
proximity

second-order
proximity

Structural Network Embedding

® How to represent network data in deep neural networks?
® How to preserve the first and second-order proximity in deep neural networks?

first-order
proximity

second-order
proximity

Daixin Wang, Peng Cui, Wenwu Zhu. Structural Deep Network Embedding. KDD, 2016.



Framework of SDNE
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Daixin Wang, Peng Cui, Wenwu Zhu. Structural Deep Network Embedding. KDD, 2016.



Preserve second-order proximity
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Daixin Wang, Peng Cui, Wenwu Zhu. Structural Deep Network Embedding. KDD, 2016.



Preserve first-order proximity
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Daixin Wang, Peng Cui, Wenwu Zhu. Structural Deep Network Embedding. KDD, 2016.



Algorithm

0 Objective Function
second-order loss first-order loss

L = Long + aLig + Ulyeg » regularization term
n

| =1 (X -X) OB II2 +azs,-n yi —y; 13 +ul
1 Algorithm e res

Algorithm 1 Training Algorithm for the semi-supervised deep
model of SDNE
Input: the network G = (V, E') with adjacency matrix S, the pa-
rameters o and v
Output: Network representations Y and updated Parameters: #
I: Pretrain the model through deep belief network to obtain the
initialized parameters 8 = {#'*), .. 9%}

2: X =8

3: repeat X

4:  Based on X and #, apply Eq. 1 to obtain X andY = Y.

50 Lmiz(X;0) = (X =X)OB|F+2atr(YTLY )+ 0L ey.

6:  Based on Eq. 6, use dLmi. /00 to back-propagate through
the entire network to get updated parameters 6.

7: until converge

o

: Obtain the network representations ¥ = Yy

Daixin Wang, Peng Cui, Wenwu Zhu. Structural Deep Network Embedding. KDD, 2016.



Experimental Results

The precision keeps at least 0.9

Table 5: precision@k on ARXIV GR-QC for link prediction

Algorithm Pa@2 [ PQl0 | P@100 | P@200 | P@300 | P@500 [ P@R800 [ P@1000 | P@10000
[ SDNE | 1 | 1 | 1 | 1 | 1% T1099= 1 097+ | 0.91%% T 0.257%F |
LINE [ 1 | 1T 7 1T 7771 77099 7| 0936 074 7| 079 | 02196 |
DeepWalk 1 0.8 0.6 0.555 0.443 0.346 1 0.2988 0.293 0.1591
GraRep 1 0.2 0.04 0.035 0.033 0.038 0.035 0.035 0.019 |
Common Neighbor 1 1 1 0.96 0.9667 098 | 0.8775 0.798 0.192
LE 1 1 0.93 0.855 0.827 066 T 0.468 0.391 0.05 |

Significantly outperforms Line at the: ** 0.01 and * 0.05 level, parredT-fest. — ~ ~ ~ ~ ~ ~ ~ = 7

Improve at least 15%

Daixin Wang, Peng Cui, Wenwu Zhu. Structural Deep Network Embedding. KDD, 2016.



What is the right order?

] Different networks/tasks require different high-order proximities
1 E.g., multi-scale classification (Bryan Perozzi, et al, 2017)

] E.g., networks with different scales and sparsity

1 Proximities of different orders can also be arbitrarily weighted
1 E.g., equal weights, exponentially decayed weights (Katz)



What is the right order?

] Existing methods can only preserve one fixed high-order proximity
1 Different high-order proximities are calculated separately

Proximityl
Proximity2 / Proximity3 Proximity4

Time consuming!

Embeddingl  Embedding2 Embedding3 Embedding4

How to preserve arbitrary-order proximity while guaranteeing accuracy and efficiency?

— What is the underlying relationship between different proximities?



Problem Formulation

1 High-order proximity: a polynomial function of the adjacency matrix
S =f(4) = wi A" + wp A% 4 -+ w, A1
Ll q: order; wy...w,: weights, assuming to be non-negative
1 A: could be replaced by other variations (such as the Laplacian matrix)
1 Objective function: matrix factorization
S — U*V*T

min
u*v*
O U* V* e RV*2: |eft/right embedding vectors

1 d: dimensionality of the space

1 Optimal solution: Singular Value Decomposition (SVD)
O [U,X,V]: top-d SVD results
U*=UVxE, V*=VV2

|2
F

Ziwei Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018.



Eigen-decomposition Reweighting
1 Eigen-decomposition reweighting

THEOREM 4.2 (EIGEN-DECOMPOSITION REWEIGHTING). If|[A, x|
is an eigen-pair of A, then |¥ (A), x| is an eigen-pair of S = F(A).

Efficient!
Eigen-decomposition

A AllX

Time Consuming! [ Polynomial F(+) Eﬁicient!lPolynomial F()

S Eigen-decompositign FM| | X

Time Consuming!

1 Insights: high-order proximity is simply re-weighting dimensions!

U* =UVL,V* =VVX
Ziwei Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018.



[l Shifting across different orders/weights:

Shifting

A

&

Efficient!

Eigen-decomposition

1 Preserving arbitrary-order proximity
1 Low marginal cost
1 Accurate and efficient

28

Preserving Arbitrary-Order Proximity

Embeddingl
Embedding2

Embedding3

Embedding4

Ziwei Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018.



Experimental Results

1 Link Prediction

+100%‘ +200cy1

Ziwei Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018.



Section Summary

Nodes & Links

¢

Pair-wise Proximity

¥

Community Structures

¢

Hyper Edges

¢

Global Structure

Network
Characteristics

Characteristics

Application

Dedicated Network Embedding Tutorial at KDD 2019:
http://cuip.thumedialab.com/papers/KDD19%20Tutorial%200n%20NE_Peng.pdf
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ABSTRACT

Network embedding assigns nodes in a network to low-dimensional representations and effectively preserves the network structure. Recently, a
sighificant amount of progresses have been made toward this emerging network analysis paradigm. In this survey, we focus on categorizing and then
reviewing the current development on network embedding methods, and point out its future research directions. We first summarize the motivation of
network embedding. We discuss the classical graph embedding algorithms and their relationship with network embedding. Afterwards and primarily,
we provide a comprehensive overview of a large number of network embedding methods in a systematic manner, covering the structure- and property-
preserving network embedding methods, the network embedding methods with side information and the advanced information preserving network
embedding methods. Moreover, several evaluation approaches for network embedding and some useful online resources, including the network data
sets and softwares, are reviewed, too. Finally, we discuss the framework of exploiting these network embedding methods to build an effective system

and point out some potential future directions.

Peng Cui, Xiao Wang, Jian Pei, Wenwu Zhu. A Survey on Network
Embedding. IEEE TKDE, 2018.



Learning from networks




R
Graph Neural Networks

Can we design a learning mechanism to directly work on graphs?



The First Graph Neural Network

1 Basic idea: a recursive definition of states

si= > F(sis;, B ¥ FE)

JEN (1) . ~
0 Asimple example: PageRank: s; = aszN(i)%.p(l @)
J

n

F. Scarselli, et al. The graph neural network model. IEEE TNN, 2009.



Many GNNs have emerged since then

“Spatial methods” Relation Nets
P MTH?I!?L' Santnrn at al :raphSAGE
: amilton et al.
Original GNN GG-NN (CVER 2017) Programs as Graphs [NIPS 2017)
= Gorietal. == Lietal Neural MP Al,'g..”?i”fﬁ —>
(2005) (ICLR 2016) . NRI
Gilmer et al. <ipf et al
(ICML 2017) GAT L .
Velickovié etal. ~ML2018)
(ICLR 2018)
GCN
Kipf & Wellin .
(IF():LR 201 7)9 “DL on graph explosion”

Other early work:

- Duvenaud et al. (NIPS 2015)

- Dai et al. (ICML 2016)

GSpicgﬂN ChebNet ) ) _ Niepert et al. (ICML 2016)
rap _| Defferrard etal. | Spectral methods _ Battaglia et al. (NIPS 2016)
Bruna et al. NIPS 2016 - Atwood & Towsley (NIPS 2016)
ICLR 2015 ( )
( ) - Sukhbaatar et al. (NIPS 2016)

(slide inspired by Alexander Gaunt’s talk on GNNs)
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How are GNNs compared with other NNs?

Capture information from graph
neighborhoods

Capture information from nearby
grids (i.e., a 2-D graph)

Capture information from contexts
(l.e., a 1-D graph)

We need to exchange information within neighborhoods



———RREEEEE
Message-passing Framework

' . [ [ . ~
1 Formulation: m@() _ AGG({hg ),Vj c Ni})
h{'"" = UPDATE([h!"”, m!"])

2

0 hl@: representation of node v; in the It" layer
O ml@: messages for node v; in the [t layer by aggregating neighbor representations

AWy
N /7
N,/

J. Gilmer, et al. Neural message passing for quantum chemistry. ICML, 2017.
W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs. NIPS, 2017.




Graph Convolutional Networks (GCN)

0 Main idea: averaging messages from direct neighborhoods

0 Stacking multiple layers like standard CNNSs:
o State-of-the-art results on node classification

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. ICLR, 2017.



Graph Attention Network (GAT)

0 Main idea: weight messages using attention mechanism

R =p(), i
JEN (i)

Graph Attention Networks. ICLR, 2018.



Expected Properties of GNNs

[0 Some expected properties of GNNS:

0 Trained end-to-end for downstream tasks

0 Vs. network embedding: unsupervised representation learning to handle
various tasks

[0 Utilize node features and graph structures simultaneously } Are existing

L . GNNs good
1 Can handle real applications with data represented as qraphs
PP P gray enough?



Outline

[0 Does GNN fuse feature and topology optimally?

0 Technical challenges in real applications: robustness



Outline

[0 Does GNN fuse feature and topology optimally?

0 Technical challenges in real applications: robustness



The intrinsic problem GCN is solving

Fusing topology and features in the way of smoothing features with

the assistance of topology.
N

X

Reuvisiting Graph Neural Networks All We Have is Low-Pass Filters, arXiv 1905.09550
Understanding the Representation Power of Graph Neural Networks in Learning Graph Topology, NeurlPS 2019



The intrinsic problem GCN is solving

] Theoretical analysis: node features as “true signal”, GNNs as a low-pass filtering
[0 Simplified GCNI: removing all non-linearity
HO = ¢ly(0)
S=D"Y2AD"Y? =] - Lgym

[0 From graph signal processing, f' = S'f corresponds to a spectral filter [2]

g =(1-72)

[0 GCNs are a special form of Laplacian smoothing for node featuresl®!

1. Simplifying Graph Convolutional Networks, ICML 2019
2. Revisiting Graph Neural Networks All We Have is Low-Pass Filters, arXiv 1905.09550
3. Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning, AAAI



Can GNNs Fully Preserve Graph Structures?
1 When feature plays the key role, GNN performs good

] How about the contrary?
] Synthesis data: stochastic block model + random features

1 DeepWalk greatly outperforms all the GCNs Method Results
] Recall the message-passing framework Random 10.0
‘ _—— Initialized as node features
mgn :AGG({hj(.”Wj EAQ GCN-1 29.7
(1+1) (0 (D) _ GCN-2 48.4
by = UPDATE(Ih," m;"}) Graph structures only provide - 6
neighborhoods in aggregation '
N o | _ o GCN-5 53.3
L1 Initial node features provide important inductive bias! DeepWalk 99.9

GCN-X: X number of layers



A New Perspective to Understand GNNs

1 A new perspective: treating GNNs as a type of (non-linear) dimensionality reduction
1 A slightly modified framework:

H+HD — 4 (;(A) H(l)wu))

/
Non-linear mapping / [

Graph structures  preyious bases Linear transform
1 Three-steps

(1) Projecting graph structures into a subspace spanned by node representations in the last step
(2) The projected representations are linearly transformed followed by a non-linear mapping
(3) Repeat the process by using the new node representations as bases

1 Why are the existing GNNSs feature-centric?

— The initial space is solely determined by node features!

Ziwei Zhang, Peng Cui, Jian Pei, Xin Wang, Wenwu Zhu. Eigen-GNN: A Graph Structure Preserving Plug-in for GNNSs. arXiv, 2006.04330.



Eigen-GNN: A Graph Structure Preserving Plug-in

1 Framework

H© — X, £(Q)] Union space of X and f(Q)

X: node features; Q: top-d eigenvector of a graph structure matrix; f(:): a simple function such as normalization
[l Experimental results:

Node classification Link Prediction Graph Isomorphism Test

Ziwei Zhang, Peng Cui, Jian Pei, Xin Wang, Wenwu Zhu. Eigen-GNN: A Graph Structure Preserving Plug-in for GNNSs. arXiv, 2006.04330.



Permutation-equivariance of GNNs

Permutation-equivariance property
If we randomly permute the IDs of nodes while maintaining the graph structure, the

representations of nodes in GNNs should be permuted accordingly

Pros:

Guarantees that the representations of automorphic nodes are identical
Automatically generalize to all the O(N!) permutations when training with only one
permutation

Most of the existing message-passing GNNs satisfy permutation-equivariance

Permutation-equivariant Node Embeddings
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Permutation-equivariance vs. Proximity-aware

Structurally equivalent

- »
< »

But no proximity

Permutation-equivariant
Node Representations

""""""""""" Conflict! =========="g2r ==~ ~~~71

Zooplankton

Proximity-preserving
Node Representations

Red Fox

Position-aware graph neural networks. ICML 2019.
On the Equivalence between Positional Node Embeddings and Structural Graph Representations. ICLR 2020.



Unique Node Identifiers
1 The key problem is we can only differentiate nodes with unique identifiers

[0 Theoretical analysis: unigue node identifiers are one necessary condition for
GNNs to be universal approximation

What graph neural networks cannot learn depth vs width, ICLR 2020



Stochastic Message Passing (SMP)

1 Assign stochastic features as node identifiers
[0 Gaussian features: associate with random projection literature

1 A dual GNN architecture:

Ziwei Zhang, Chenhao Niu, Peng Cui, et al. A Simple and General Graph Neural Network with Stochastic Message Passing. arXiv, 2009.02562.



Theoretical Guarantee
SMP can preserve node proximities

Theorem 2. An SMP in Eq. with the message-passing matrix A and the number of propagation
steps I can preserve the walk-based proximity A (A" with high probability if the dimensional-

ity of the stochastic matrix d is sufficiently large, where the superscript " denotes matrix transpose.
The theorem is regardless of whether E are fixed or resampled.

SMP can recover the existing permutation-equivariant GNNs

Corollary 2. For any task, Eq. with the aforementioned linear F () is at least as powerful as
the permutation-equivariant Foyy: (A, F; W'), i.e., the minimum training loss of using H in Eq.
is equal to or smaller than using H) = Foan (A, F: W').

An adaptive GNN that maintains both proximity-awareness and
permutation-equivariance

Ziwei Zhang, Chenhao Niu, Peng Cui, et al. A Simple and General Graph Neural Network with Stochastic Message Passing. arXiv, 2009.02562.



Experimental Results

Ziwei Zhang, Chenhao Niu, Peng Cui, et al. A Simple and General Graph Neural Network with Stochastic Message Passing. arXiv, 2009.02562.



Outline

[0 Does GNN fuse feature and topology optimally?

O Technical challenges in real applications: robustness
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Technical challenges in real applications

— Applicati()n

Robustness Interpretability Applicability

Hot directions in computer vision:

Adversarial Explainable Scalable



Robusthess in GNNs

] Adversarial attacks
1 Small perturbations in graph structures and node attributes lead to great changes

1 A serious concern for applying GNNs to real-world applications

Results for attacking Citeseer data

]J target node [] ol
’1] "™ attacker node [] -3 R I R
¢ Train node classification model | % s % %
3. a £

g 'h,_l va""
Target gets . - .
% misclazsifled [%3 Mettack Mettack-In. Clean
graph

e . J
\_SErU Q% value _/I argmdx{,}'z (5. uz ) a)

Adversarial Attacks on Neural Networks for Graph Data, KDD 2018



Adversarial Attacks on GNNs

] Categories

] Targeted vs. Non-targeted
] Targeted: the attacker focus on misclassifying some target nodes
1 Non-targeted: the attacker aims to reduce the overall model performance
1 Direct vs. Influence
1 Direct: the attacker can directly manipulate the edges/features of the target nodes
1 Influence: the attacker can only manipulate other nodes except the targets

1 Attacker knowledge:

Settings Parameters | Predictions | Labels Training Input
White-Box Attack (WBA) v v v v
Practical White-box Attack (PWA) v v v
Restrict Black-box Attack (RBA) v
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Robust Graph Convolutional Networks
] How to enhance the robustness of GNNs against adversarial attacks?

1 Adversarial attacks in node classification
1 Connect nodes from different communities to confuse the classifier

1 Distribution vs. plain vectors
] Plain vectors cannot adapt to such changes
] Variances can help to absorb the effects of adversarial changes
] Gaussian distributions — Hidden representations of nodes

Dingyuan Zhu, Ziwei Zhang, Peng Cui, Wenwu Zhu. Robust Graph Convolutional Networks Against Adversarial Attacks. KDD, 2019.



The Framework of RGCN

e —.|sample —
- Mt ’

- Task $pecific
| Loss Function
b4

Feature !
matrix '\

e0 00| I s e
Y X X N} | :::
0 00 Variance-based | 2900
Y N X Altention Attention L 1 1 ]
Gaussian based representations: Variance-based Attention:  Sampling process: explicitly
variance terms absorb the effects of Remedy the propagation considers mathematical relevance
adversarial attacks of adversarial attacks between means and variances

Dingyuan Zhu, Ziwei Zhang, Peng Cui, Wenwu Zhu. Robust Graph Convolutional Networks Against Adversarial Attacks. KDD, 2019.



e
Experimental Results

1 Node Classification on Clean Datasets

Cora | Citeseer | Pubmed
GCN 51.0 70.9 79.0
GAT 53.0 72.5 79.0
RGCN | 83.1 71.3 79.2

1 Against Non-targeted Adversarial Attacks

Cora Dataset 075 Citeseer Dataset i Pubmed Dataset

Accuracy

0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 o 0.2 0.4 0.6 0.8 1
Ratio of Noise Edges Ratio of Noise Edges Ratio of Noise Edges

Figure 2: Results of different methods when adopting Random Attack as the attack method.

Dingyuan Zhu, Ziwei Zhang, Peng Cui, Wenwu Zhu. Robust Graph Convolutional Networks Against Adversarial Attacks. KDD, 2019.



Recap: Graph Neural Networks

[0 Message-passing framework of GNNs
[0 Frontiers:
[0 Does GNN fuse feature and topology optimally?

[0 Technical challenges in real applications: robustness
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Deep Learning on Graphs: A Survey

Journals & Magazines = IEEE Transactions on Knowledg... > Early Access (7]

Deep Learning on Graphs: A Survey

Publisher: IEEE Cite This PDF

Ziwei Zhang ; Peng Cui; Wenwu Zhu  All Authors

oper Rl @ = © a
Citations Text Views
Abstract Abstract:
Deep learning has been shown to be successful in a number of domains, ranging from acoustics,
Authors images, to natural language processing. However, applying deep learning to the ubiquitous graph
data is non-trivial because of the unique characteristics of graphs. Recently, substantial research
Citations efforts have been devoted to applying deep learning methods to graphs, resulting in beneficial
advances in graph analysis techniques. In this survey, we comprehensively review the different
Keywords types of deep learning methods on graphs. We divide the existing methods into five categories
based on their model architectures and training strategies: graph recurrent neural networks, graph
Metrics convolutional networks, graph autoencoders, graph reinforcement learning, and graph adversarial
methods. We then provide a comprehensive overview of these methods in a systematic manner
Media mainly by following their development history. We also analyze the differences and compositions

of different methods. Finally, we briefly outline the applications in which they have been used and
discuss potential future research directions.

Published in: IEEE Transactions on Knowledge and Data Engineering ( Early Access )

Ziweil Zhang, Peng Cui, Wenwu Zhu. Deep Learning on Graphs:
A Survey. IEEE TKDE, 2020.



Learning from networks

Automated Graph

Machine Learning




Problems in Existing Graph Learning Methods

Manually design architectures and hyper-parameters through trial-and-error
Each task needs be handled separately

kip-connect

s
c{k2} _éalg—add—softplus Cos-add-linear :n
o GCN-add-;c;t:q_)Efs::fgl, 0 —— :-

GON-add-selus

c_{k-2} ;__(_?_(ZN—add—lineat o 0
— —_—— R
skip-connect 7 c_{k}
c {k-1} !

xSymGA_T—meal@

GCN-add-linear
b T
__ Const-add-tanh skip-connect
T SwllG.AT-]fﬁﬁ-?ilﬁlijf«% 0 I__"_____ et

Automated graph machine learning is critically needed!



A Glance of AutoML

‘::- \ Dataset e
Rl

e L, !{3}
Optimization
Metric ! L
i
Automated Machine Learning
Machine Learning Model

i Constraints
(Time/cost)

Design ML methods — Design AutoML methods
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ML vs. AutoML

O Rely on expert knowledge O Free human out of the loop
O Tedious trail-and-error O High optimization efficiency
O Low tuning efficiency O Discover & extract patterns and

O Limited by human design combinations automatically



Automated Graph Learning

0 Automated Machine Learning on Graph

0 Graph Hyper-Parameter Optimization (HPO)
0 Graph Neural Architecture Search (NAS)

O The key: Graph Structure!

Various diverse graph
structures may place complex

Impacts on graph HPO and
graph NAS
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Challenge: Unique Graph ML Architecture

Data NN architecture Search Space




e
Challenge: Complexity and diversity of graph tasks

.1 &1 Link Prediction
.1 0 Community Detection
High-order Proximity 1 [1 Node Classification

ol
! L1 Network Distance

.| 0 Node Importance

. _ - - I = -
Permutation equw:;ggce 0 O Graph Classification
1]

/ \ it L1 Graph Matching

- Phone —%-Banana,! ...
Transitivity — Non-transitivity !!

Various graph properties Various applications Various domains

] No single method can perfectly handle all scenarios



Challenge: Scalability

Social Networks
WeChat: 1.2 billion monthly active users (Sep 2020)
Facebook: 2.8 billion active users (2020)

E-commerce Networks

Millions of sellers, about 0.9 billion buyers, 10.6
trillion turnovers in China (2019)

Citation Networks

133 million authors, 277 million publications, 1.1
billion citations (AMiner, Feb 2021)

Challenge: how to handle billion-scale graphs?



Outline

[0 Graph Hyper-parameter Optimization
[0 Graph Neural Architecture Search
0 Automated Graph Learning Libraries
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Hyper-Parameter Optimization

0 Goal: automatically find the optimal hyper-parameters

Machine Learning Model _
Optimal Hyper-parameter

Configuration

RPO

. -Data . . .
0 Formulation: bi-level optimization

iy Loa (W (), a)
s.t.  W*(a) =argmin (Lqin (W, ))
W

0 Challenge: each trial of the inner loop on graph is computationally expensive,
especially for large-scale graphs



AutoNE: Framework

Transfer the knowledge about optimal hyper-parameters

from sampled subgraphs to the original massive graph

Tu Ke, Jianxin Ma, Peng Cui, Jian Pei, and Wenwu Zhu.
AutoNE: Hyperparameter optimization for massive network embedding. KDD 2019.



AutoNE: Sampling Module
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0 Goal: sample representative subgraphs that share similar properties with the original large-scale graph
0 Challenge: preserve diversity of the origin graph

00 Method: multi-start random walk strategy
0 Supervised: nodes with different labels
0 Unsupervised: from different discovered communities, e.g., a greedy algorithm that maximizes modularity



AutoNE: Signature Extraction Module
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0 Goal: learn a vector representation for each subgraph so that knowledge can be transferred
0 Challenge: learn comprehensive graph signatures
0 Method: NetLSD [Tsitsulin et al. KDD18]

0 Based on spectral graph theory, heat diffusion process on a graph  h.(G) = tr(H,) = tr(e™) = 2 et
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0 Goal: transfer knowledge about hyper-parameters of subgraphs to the original large-scale graph
O Assumption: two similar graphs have similar optimal hyper-parameter
0 Method: Gaussian Process based meta-learner

1 1
Inp(f | X) = —EfTK(X, X)" - P In det(K(X. X))+ constant.
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AutoNE: Experiments
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Factorization-Based Graph ML

Table 1: Results on a massive network with around thirty
million edges, where we can only afford to run a NE algo-
rithm on the whole network for a few times.

Trial 1 Trial 2 Trial 3
Method - - -
AUC | Time(s) | AUC | Time(s) | AUC | Time(s)
AutoNE 0.717 | 1067.9 0.726 | 1856.2 0.769 | 2641.9
Random 0.714 | 698.3 0.727 | 1426.3 0.715 | 2088.6
BayesOpt | 0.715 | 702.5 0.714 | 1405.1 0.727 | 2307.7

Large-Scale Graphs



e-AutoGR: Overview

Transfer the knowledge about optimal hyperparameters from the sub-

graphs to the original graph in an explainable way

Wang Xin, Shuyi Fan, Kun Kuang, and Wenwu Zhu. Explainable Automated Graph
Representation Learning with Hyperparameter Importance. ICML 2021.
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e-AutoGR: Overview

U4 \
[l |
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
\ J

——————————

0 Goal: sample representative subgraphs that share similar properties with the original large-scale
graph, similar to AutoNE.

0 Challenge: preserve diversity of the origin graph

0 Method: multi-start random walk strategy
0 Supervised: nodes with different labels
00 Unsupervised: from different discovered communities, e.g., a greedy algorithm that maximizes modularity



e-AutoGR: Sampling Module
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0 Goal: Extract explainable graph features that can measure similarities.
0 Six explainable graph features

o1 Number of nodes: |V| 0 Global clustering coefficient: 35;::;:::; ;:;al’:f;es
0 Number of edges: |E| 00 Maximum total degree value
0O Number of triangles 00 Number of components

|fe—7kl

O Similarity: Canberra Distance g* =d (f%,f) = X8_,
| fiel 1kl
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0 Goal: Learn performance function on small sampled graphs and predict on the
origin massive graph in an explainable manner

0 Method:

0 Adopt explainable graph features

0 Decorrelate the correlations between different hyper-parameters given explainable graph
features when learning the performance function



e-AutoGR: Algorithms

Algorithm 2 Explainable Automated Graph Representation
(e-AutoGR)

1: Imput: Graph (G, Graph representation algorithm R.

2: Output: The optimal hyperparameter configuration A*.

3: Sample s subgraphs G;,i = 1.2,...,s from original

graph (G according to Section 3.2.1.

4. Decide t; for each G; according to Section 3.2.2.

5. Execute algorithm R on each subgraph G; for ¢; times
and obtain hyperparameter matrix A and graph feature
matrix 5 as well as the performance vector Y.
Initialize C'ount = T.
repeat

Execute Step 1 to Step 3 in Section 3.4,
Count = Count — 1.
10: until Count == 0

e




e-AutoGR: Experiments
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Figure 3. Explaining hyperparameter importance in affecting performance.
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JITUNE

0 Hierarchical Synopsis: multi-level hierarchical architecture of network

0 Vs. sampling in AutoNE and eAutoGR:
[ Better time-constrained hyperparameter tuning
0 Direct transfer without the meta-learning process

JITUNE: Just-In-Time Hyperparameter Tuning for Network Embedding Algorithms. arXiv 2021.



HESGA-TSM

0 Optimization: genetic algorithm
[0 Hierarchical evaluation

1 Fast evaluation to select candidates
[0 Reduce training epochs

O Full evaluation: fully train candidates
models and test on validation set

1 Tradeoff between efficiency and
effectiveness

A Genetic Algorithm with Tree-structured Mutation for Hyperparameter Optimisation of Graph Neural Networks. arXiv 2021.



HESGA-TSM

1 Tree-structure Mutation

Algorithm 1 TSM with An Given Individual
1: Input an individual s, tree, t = | |
2: p = tree(s) > pathway p identification in tree
3: for j =1 — np do > in pathway p, the maximum
depth of tree without leaf nodes 7,
4: tiotal+ = f(fj) > t; denotes the times recorded in
node 7, f is reciprocal function
t.append(f(t;))
end for
t' «+ each element in 7 is divided by #¢ota
i = rws(ny, t') > node i, rws roulette wheel selection
14— the defined value range in node ¢
10: v = uniform(r) > mutated value v
11: s" + s; is replaced with binary(v) > for s, s; the
fragment of binary coding for mutation
12: Output individual s’

A Genetic Algorithm with Tree-structured Mutation for Hyperparameter Optimisation of Graph Neural Networks. arXiv 2021.



e
AutoGM

O A unified framework for graph learning algorithms

0 Five hyper-parameters:..
0 Dimension d: The dimensionality of the messages
0 Length k: The size of neighborhood
0 Width w: The number of message passing steps.
0 Non-linearity I: The nonlinearity in the message passing
[0 Aggregation strategy a: How to aggregate messages

0 Algorithm: Bayesian optimizatopn

Spoiler: very similar to search
space of graph NAS (using
HPO methods)

Autonomous Graph Mining Algorithm Search with Best Speed/Accuracy Trade-off. CIKM 2020.
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[0 Graph Hyper-parameter Optimization
OO0 Graph Neural Architecture Search
0 Automated Graph Learning Libraries



Neural Architecture Search (NAS)

0 Goal: automatically learn the best neural architecture

)

Search space

.

>

Manual Design

4
[
]

| Latency

0 Categorization

\ Accuracy ,

¢ Performance Y

Y

Neural Architectures

o

Training &
Evaluation

Target

dataset
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Graph NAS Search Space: Message-passing Framework

[l Message-passing framework of GNNs

&y & f
3 \\/ /

O ml@: the received message of node v; in the [t" layer \ /
<+«<— MesSsages

O hl@: the representation of node v; in the [t" layer

1 All these choices can be searched



Graph NAS Search Space: Micro

0 Micro search space:

0 Aggregation function AGG(-): how to aggregate information from neighbors
0 Requirement: not depending on orders (i.e., neighbors are regarded a set instead of a sequence)
0 Common choices: mean, max, sum, etc.

00 Aggregation weights a;;: the importance of different neighbors

0 Combining function COMBINE(:): how to update representation
0 Common choices: CONCAT, SUM, MLP, etc.

0 Non-linearity o(+): Sigmoid, ReLU, tanh, etc.

(D

0 Dimensionality of h;, the number of attention heads (when using attention)

Graph Neural Architecture Search, [JCAI 2020.



Graph NAS Search Space: Macro

0 Macro search space: how to arrange different layers
[0 Residual connection, dense connection, etc.

01 Formulation: 1y _ | ( (j))
H o Zj<l fj H

O F;;: connectivity pattern from jt" to the [*" layer
1 ZERO (not connecting), IDENTITY (residual connection), MLP, etc.



Graph NAS Search Space: Pooling

Other search spaces
Pooling methods: hg = POOL (H)

Aggregate node-level representation into graph-level representation

Hyper-parameters: similar to HPO for graphs

Number of layers, number of epochs, optimizer, dropout rate, etc.

........................................................................................................
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Graph NAS Search Strategy

Most previous general NAS search strategies can be directly applied

Controller (e.g., RNN) + Reinforcement learning (RL)

Sample architecture A
with probability p

[ _

Trains a child network
The controller (RNN) with architecture
A to get accuracy R

Compute gradient of p and

scale it by R to update
the controller

Controller samples architecture (e.g., as a sequence)
RL feedback rewards (e.g., validation performance) to update the controller



Graph NAS Search Strategy

] Most previous general NAS search strategies can be directly applied

O
0 Evolutionary
O

] Need to define how to sample
parents, generate offspring, and

update populations
1 E.g., remove the worst individual (Real, et
al., 2017), remove the oldest individual
(Real, et al., 2018), or no remove (Liu, et
al., 2018)



T
Graph NAS Search Strategy

] Most previous general NAS search strategies can be directly applied

O
O
1 Differentiable

0 Generate a super-network to combine operations of the search space
o Continuous relaxation to make the model differentiable



Graph NAS Performance Estimation

O Low-fidelity training
0 Reduce number of epochs
0 Reduce training data: sample subgraphs as in HPO

O Inheriting weights

0 Challenge: parameters in graph ML (e.g., GNNs) are unlike other NNs

O E.g., constraints by AGNN (Zhou et al., 2019)

[0 Same weight shapes
1 Same attention and activation functions

0 Weight sharing in differentiable NAS with one-shot model



NAS for Graph Machine Learning

0 Summary of NAS for graph ML



Graph NAS Example: GraphNAS

~— Node 3 [— ~— Node 4 [— Global — Layer Structure

1 GCN 2 GCN ADD relu | %I

i oy r > 1r sl b=
po=m==n p===- . i4DD)
'-.__:L}_?Er@@j'-.:: LZ_d

Search space: micro + macro

Search strategy: RNN controller + RL
GNN architecture description: a sequence of choices

No parameter sharing

Graph Neural Architecture Search, IJCAI 2020



Graph NAS Example: GraphNAS

Cora Citeseer Pubmed
semi sup rand semi sup rand semi sup rand
GCN 81.4+0.5 90.2+0.0 88.3+1.3| 70.9+0.5 80.0+0.3 77.2+1.7| 79.0+0.4 87.8+0.2 88.1+1.4
GAT 83.040.7 89.5+0.3 87.2+1.1| 72.5+0.7 78.6£0.3 77.1+£1.3| 79.0£0.3 86.5+0.6 87.8+1.4
ARMA 82.8+0.6 89.8+0.1 88.2+1.0] 72.3+£1.1 79.9+£0.6 76.7£1.5| 788403 88.1£0.2 88.7£1.0
APPNP 83.3+£0.1 90.4+0.2 87.5+£1.4| 71.8£0.4 79.2+£0.4 77.3£1.6| 80.24+0.2 87.4+0.3 88.2+1.1
HGCN 79.8+1.2 89.7+0.4 87.7+1.1| 70.0+=1.3 79.24+0.5 76.94+1.3| 78.4+0.6 88.0+0.5 88.0+1.6
GraphNAS-R | 83.3£0.4 90.0+£0.3 88.5+1.0| 73.4+04 81.1£0.3 76.5£1.3| 79.0+£0.4 90.7+0.6 90.3+0.8
GraphNAS-S | 81.4+£0.6 90.1£0.3 88.5+£1.0| 71.7£0.6 79.6£0.5 77.5£2.3| 79.5+0.5 88.5+0.2 88.5+1.1
GraphNAS 83.7+0.4 90.6+0.3 88.9+1.2| 73.5+0.3 81.2+0.5 77.6+1.5| 80.5+0.3 91.2+0.3 91.1£1.0

0 Outperforms the existing manually designed architectures

Graph Neural Architecture Search, IJCAI 2020



Graph NAS Example: GraphNAS

G-Cora G-Citeseer G-Pubmed
Hi Hi Hz’
4 4 4
tanh identity tanh
4 T 4
concat concat concat
A ik ik
Og
L= ' : ' 0, 0
0, 0, 05 0, 0, }4
[oate] [con] [oen] [y ] [caTs] [awaa] [care]
Hz'—Z Hi—l Hi—z Hi—l Hz‘—z Hi—l

The optimal architectures differ across different datasets

Graph Neural Architecture Search, IJCAI 2020



Graph NAS Example: AutoGNN
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[0 Search space: micro

[0 Search strategy: reinforced conservative controller + RL

[0 Conservative Explorer: maintain the best neural architecture found so far
0 Guided Architecture Modifier: modify the best architecture found so far via selecting and mutating
the action classes

Auto-GNN Neural Architecture Search of Graph Neural Networks, arXiv 2019



Graph NAS Example: AutoGNN

O Performance estimation: constrained parameter sharing

Constraint 1: the same Shape Constramt 3 W|thout sharlng for BN and SC
?_r;;:zs;tir ___J Aﬁentlhn H Head HAggregateH Combine HAa'tlvaﬂon

-

------------------------------------------------------------------------------------------------------------------------------------

-
-

_________________________________________

_——————
"" =

Layer 3

CIJ_fEf;[:;rrlrlg |D|Imens|‘onl [ A‘ttentldn)—[ 'Head* ]_qugregat%-[Comblne]_[A&twatlbn

Constramt 2 the same funcnon

OThree constraints:

[0 Same tensor shapes
[0 Same attention and activation functions
0 Skip connections and batch normalization do not share

Auto-GNN Neural Architecture Search of Graph Neural Networks, arXiv 2019



Graph NAS Example: AutoGNN

) Cora Citeseer Pubmed
Baseline Class Model #Layers #Params  Accuracy | #Params  Accuracy | #Params  Accuracy
Chebyshev 2 0.09M 81.2% 0.09M 69.8% 0.09M 74.4%
Handcrafted GCN 2 0.02M 81.5% 0.05M 70.3% 0.02M 79.0.5%
Architectures GAT 2 0.09M 83.0+0.7% 0.23M 72.5+0.7% 0.03M 79.0 +0.3%
LGCN 3~ 4 0.06M 83.3 +0.5% 0.05M 73.0 £ 0.6% 0.05M 79.5 +0.2%
GraphNAS-w/o share 2 0.09M 82.7 £ 0.4% 0.23M 73.5+1.0% 0.03M 78.8 +0.5%
. GraphNAS-with share 2 0.07M 83.3 +£0.6% 1.91M 724+ 1.3% 0.07M 78.1 £ 0.8%
NAS Baselines
Random-w/o share 2 0.37M 81.4+1.1% 0.95M 72.9 + 0.2% 0.13M 77.9 + 0.5%
Random-with share 2 2.95M 82.3 £ 0.5% 0.95M 69.9+1.7% 0.13M 77.9 £ 0.4%
AGNN AGNN-w/o share 2 0.05M 83.6 £ 0.3% 0.71M 73.8 £ 0.7% 0.07M 79.7 £ 0.4%
AGNN-with share 2 0.37M 82.7 £ 0.6% 1.90M 72.7 +0.4% 0.03M 79.0 +0.5%

Auto-GNN Neural Architecture Search of Graph Neural Networks, arXiv 2019



Graph NAS Example: SANG

[0 Search space: micro + macro
[0 Search strategy: RNN + RL

Simplifying Architecture Search for Graph Neural Network, CIKM 2020 workshop



Graph NAS Example: SANG

A caution of search space: trade-off between effectiveness and efficiency

Alternate the search space using domain knowledge and trial-and-errors

Node aggregators Layer aggregators Others
. GCN,SAGE-SUM/-MEAN/-MAX, MLP, Hidden Embeddin
GraphNAS/ - ' | , J

. GAT ,GAT-SYM/-COS/ - Size,Attention Head,

Auto-GNN , | ,
—LINEAR/-GEN-LINEAR, Activatlion Function

All above plus SAGE-LSTM and
Ours , CONCATMAX,LSTM IDENTITY, ZERO
GeniePath

Simplifying Architecture Search for Graph Neural Network, CIKM 2020 workshop



Graph NAS Example: AutoGraph

0 Previous RL based NAS: a fixed number of layers

[0 Search space: micro + macro

[0 Search strategy: evolution
0 A special “Layer Add” operation
— A flexible number of layers

AutoGraph: Automated Graph Neural Network, ICONIP 2020



Graph NAS Example: AutoGraph

Table 2. Experiment results on Cora, Citeseer and Pubmed

Table 3. Experiment results on PPI

Models ‘ora Citeseer Pubmed
Chebyshev | 81.2% 69.8% 74.4%

GCN 81.5% 70.3% 79.0%

GAT 83.0+0.7% 1 72.5+0.7% |79.0+0.3%
LGCN 83.3+0.5% |73.0x£0.6% |79.5=+0.2%
GraphNAS 833 +0.6% | 73.5£1.0% |78.8+0.5%
AutoGraph 83.5 +0.4% 74.4 + 0.4% | 80.3 &+ 0.3%

Models micro-F1
GraphSAGE (Istm) | 0.612
GeniePath 0.979

GAT 0.973 + 0.002
LGCN 0.772 £ 0.002
GraphNAS 0.985 £+ 0.004
AutoGraph 0.987 + 0.003

AutoGraph: Automated Graph Neural Network, ICONIP 2020



Graph NAS Example: AutoGraph

AutoGraph: Automated Graph Neural Network, ICONIP 2020



Graph NAS Example: NASGNN

[0 Search space: micro + macro

[0 Search strategy: aging evolution (Real et al., AAAI 2019), RL, random search

Macro

Micro

Accuracy

Time

Accuracy

Time

COR

EA

0.83 £0.007

0.75£0.16

0.82 = 0.005

1.73 £0.53

RL

0.83 £0.003

1.45+0.38

0.81 =0.001

242 £0.62

RS

0.82 £ 0.003

0.96 £ 0.02

0.80 = 0.009

1.20+0.21

CIT

EA

0.75 = 0.002

1.18 +0.10

0.71 + 0.007

2.80+0.72

RL

0.73 = 0.004

1.52 +0.42

0.68 + 0.006

2.24 +£0.08

RS

0.73 = 0.005

1.05 +0.03

0.69 = 0.006

1.29 £ 0.04

MED

EA

0.82 = 0.003

1.40 = 0.37

0.82 £ 0.009

1.40 £ 0.09

RL

0.80 = 0.003

2.10+0.14

0.76 = 0.017

2.58 £0.28

RS

0.85 = 0.045

1.31 +=0.02

0.80 = 0.009

1.10 £0.18

CS

EA

0.98 £0.001

3.35£0.78

0.99 = 0.002

2.65 £0.48

RL
RS

0.95 £0.001
0.97 £ 0.001

3.13+£0.11
1.50 £ 0.03

0.97 = 0.002
0.99 = 0.001

2.90 £0.34
1.58 £ 0.05

PHY

EA
RL

0.99 £ 0.002
0.98 =0.001

4.21 £0.85
3.34 £0.27

0.99 = 0.000
0.98 = 0.001

1.534+0.15
2.01+£0.19

RS

0.98 £=0.001

2.08 £0.07

0.99 = 0.001

1.11 +£0.05

CMP

EA

0.91 £ 0.005

3.09 £0.49

0.93 = 0.004

4.02+£1.94

RL

0.90 = 0.010

3.43 +£0.21

0.92 + 0.008

3.68 £0.27

RS

0.89 £ 0.004

1.69 = 0.07

0.92 = 0.002

2.05 £ 0.07

PHO

EA

0.97 = 0.002

2.48 £0.22

0.98 = 0.004

1.66 £0.41

RL

0.96 = 0.005

3.65 +0.19

0.97 = 0.002

1.88 £0.23

RS

0.96 = 0.002

1.82 +0.04

0.97 = 0.002

1.08 £ 0.04

Neural Architecture Search in Graph Neural Networks, BRACIS 2020



learning hyper-parameter

Graph NAS Example: Genetic-GNN

[0 Search space: micro + hyper-parameters
[0 Search strategy: alternating evolution process between GNN architectures and

GNN Structure Chromosome

......................................

1
2

1
S3

Struct 1

Si

L

First GNN Laver

GNN Learning Parameter Chromosome

First GNN Laver
Second GNN Laver Public

Struct 2

Struct 2

z pnns
T 1pnas

Struct 3

Y
Second GNN Laver

Y

.......................................

Param 1

—

Param 2

Param 1

guieieq

Param 3

GNN Architecture Representation

Initialize Population

Struct 1
Param 1

Struct 2

Struct 1
Param 2

Struct 2
Parameter Evolution

Evolutionary Architecture Search for Graph Neural Networks, arXiv 2020

Structure Evolution

Update Population




Graph NAS Example: Stacked MPNN

Previous graph NAS: focus on node classification

Molecular property prediction: graph-level tasks

Search space: micro + macro + pooling

Choices: global pool, global gather, global attention pool, global attention sum pool, flatten

Search strategy: regularized evolution

Experiments:
Data Set | Stacked MPNN  MoleculeNet GNN
QM7 (MAE) 48.0+0.7 77.9+2.1
ESOL (RMSE) 0.54+0.01 0.584+0.03
FreeSolv (RMSE) 1.21+0.03 1.15+-0.12
Lipophilicity (RMSE) 0.598+0.043 0.71540.035

Stacked Molecule Stacked Molecule
QM3 MPNN Net GNN QM5 MPNN Net GNN
E1-CC2 0.00684-0.0003 0.0084 mu 0.5644-0.003 0.358
E2-CC2 0.007940.0003 0.0091 alpha 0.69+0.01 0.89
f1-CC2 0.01294-0.0002 0.0151 HOMO | 0.00560-0.00004 0.00541
f2-CC2 0.02914-0.0005 0.0314 LUMO | 0.00602-+0.00002 0.00623
E1-PBEO | 0.0064-20.0001 0.0083 gap 0.008040.0000 0.0082
E2-PBEO | 0.0072-40.0001 0.0086 gap 0.008040.0000 0.0082
f1-PBEO | 0.01044-0.0002 0.0123 gap 0.00804-0.0000 0.0082
f2-PBE0 | 0.02164-0.0005 0.0236 gap 0.00804-0.0000 0.0082
E1-CAM | 0.00634-0.0001 0.0079 R2 41.340.6 28.5
E2-CAM | 0.006940.0002 0.0082 ZPVE 0.00130-+0.00014 0.00216
f1-CAM 0.011740.0002 0.0134 ZPVE 0.00130-+0.00014 0.00216
f2-CAM 0.02360.0001 0.0258 uo 0.654+0.06 2.05
U 0.6240.05 2.00
H 0.68+0.11 2.02
G 0.661+0.05 2.02
Cv 0.35+0.01 0.42

Graph Neural Network Architecture Search for Molecular Property Prediction, IEEE BigData 2020



Graph NAS Example: DSS

[0 Search space: micro

[0 Search strategy: differentiable

I(j)—ZOU( )2<3<N 2.

] exp (o)
6(%]) ({L') — Z (3 j) (,’L’)
OEO?;,J' O EO% . eXp ( )

One-shot Graph Neural Architecture Search with Dynamic Search Space, AAAI 2021



Graph NAS Example: DSS

0 Dynamic search space: only the top-K operations are kept after an iteration
[0 Basic idea: if an operation is ranked lower than the other in a subset, it is ranked lower in the universe.

Algorithm 1 Search with dynamic search space

Input: a set of operation candidates O, the number of nodes
N 1n a cell, the maximum size M of the candidates subset,
the maximum epoch max_epoch of inner-loop to optimize
a hyper-network, the number /X' of top candidates to be re-
mained after each iteration
Output: architecture parameter o

I: Random sample O; ; € O of size M

2: while O # @ do

3 Let O+ O — O%j

4:  Random initialize a(*7)

5: for epoch € {1, ..., max_epoch} do

6: Update weights w with L¢pqin (W, o)

7: Update architecture @ with £,,47i4(w, &)

8: __end for
9:  Select top K operations OF ; € O, ;
0:  Random sample O; ; € O of size M — K
b LetO;; + Of ;UO;
mue

One-shot Graph Neural Architecture Search with Dynamic Search Space, AAAI 2021



Graph NAS Example: DSS

Cora Citeseer Pubmed
Type ‘ Model ‘ semi full semi full semi full
\ GCN (Kipf and Welling 2016) | S1.4+05% 90.2+0.0% | 709+ 05% 80.0+£0.3% | 79.0+£0.4% 8S87.8 £0.2%

Manually | GAT (Velickovic et al. 2017) | 83.0 £ 0.7% 89.5+0.3% | 72.5+0.7% 78.6+0.3% | 79.0+0.3% 86.5+ 0.6%
y
Crafted | ARMA (Bianchi etal. 2019) | 828 +0.6% 80.8+0.1% | 723+ 1.1% 79.9+0.6% | 788+ 0.3%  88.1+0.2%
| APPNP (Klicperaetal. 2018) | 83.3+0.1% 90.4+0.2% | 718+ 04% 79.24+04% | 80.2+0.2% 87.4+0.3%
| H-GCN (Hu et al. 2019) | 79.8+£1.2% 89.7+04% | 70.0+1.3% 79.2+0.5% | 784+0.6% 88.0 +0.5%
Macro | AGNN (Zhou et al. 2019) | 83.6 +0.3% _ | 73.84+0.7% i | 79.7 +0.4% ]
NAS , 83.7 + 0.4% 73.5+ 0.3% R0.5 + 0.3%
GraphNAS (Gao etal. 2020) |~ 5 o fig) - (2 GPU Hrs) ) (9 GPU Hrs) -
, 90.6 & 0.3% 81.2+ 0.5% 01.2 + 0.3%
Micro | OTAPHNAS (Gaoetal. 2020) - (6 GPU Hrs) - (6 GPU Hrs) - (12 GPU Hrs)
NAS DSS (Ours) 83.0L03% 01.0+02% | 73.3203% 81.4+04% | 8034+ 02% 88.2+0.4%
‘ (0.9 GPU Hrs) (0.8 GPU Hrs) (0.9 GPU Hrs)

Competitive performance to existing GNN NAS approaches with up to 10x speedup

One-shot Graph Neural Architecture Search with Dynamic Search Space, AAAI 2021



Graph NAS Example: PDNAS

[0 Search space: micro + macro
0 Search algorithm: differentiable
Probabilistic Dual Network Architecture Search on Graphs, arXiv 2021



Graph NAS Example: EGAN

[0 Search space: micro + macro

[0 Search strategy: one-shot differentiable
[0 Large-scale graphs: sample subgraphs as proxies (similar to AutoNE and eAutoGR)

Efficient Graph Neural Architecture Search, OpenReview 2020



Graph NAS Example: SANE

Node aggregator: similar to the micro space
Search how to aggregate neighborhoods

h!, = 6(W' - AGGyqe({h!7!, Vu € N(v)}))
Layer aggregator: similar to the macro space

Search how to aggregate different layers
1 K
sz — AGGlayer(h,U7 st 7h’U )

Candidate operations

Operations

SAGE-SUM, SAGE-MEAN, SAGE-MAX, GCN,
O,, GAT,GAT-SYM, GAT-COS, GAT-LINEAR,
GAT-GEN-LINEAR, GIN, GeniePath

O, CONCAT, MAX, LSTM

O, IDENTITY, ZERO

Search to aggregate neighborhood for graph neural network, ICDE 2021



Graph NAS Example: SANE

Human-designed
architectures

Transductive Inductive
Methods Cora CiteSeer PubMed PPI
GCN 0.8811 (0.0101)  0.7666 (0.0202 0.8858 (0.0030 0.6500 (0.0000)
GCN-JK 0.8820 (0.0118)  0.7763 (0.0136 0.8927 (0.0037 0.8078(0.0000)
GraphSAGE 0.8741 (0.0159)  0.7599 (0.0094 0.8834 (0.0044 0.6504 (0.0000)

GraphSAGE-JK
GAT

GAT-JK

GIN

GIN-JK
GeniePath
GeniePath-JK
LGCN

0.8841 (0.0015)

0.8719 (0.0163)
0.8726 (0.0086)
0.8600 (0.0083)
0.8699 (0.0103)
0.8670 (0.0123)
0.8776 (0.0117)
0.8687 (0.0075)

)
)
)
0.7654 (0.0054)
0.7518 (0.0145)
0.7527 (0.0128)
0.7340 (0.0139)
0.7651 (0.0133)
0.7594 (0.0137)
0.7591 (0.0116)
0.7543 (0.0221)

0.8942 (0.0066

)
)
)
)
0.8573 (0.0066)
0.8674 (0.0055)
0.8799 (0.0046)
0.8878 (0.0054)
0.8846 (0.0039)
0.8868 (0.0037)
0.8753 (0.0012)

0.8019 (0.0000)
0.9414 (0.0000)
0.9749 (0.0000)
0.8724 (0.0002)
0.9467 (0.0000)
0.7138 (0.0000)

)

)

0.9694 (0.0000
0.7720 (0.0020

NAS approaches

Random
Bayesian
GraphNAS
GraphNAS-WS

0.8594 (0.0072)
0.8835 (0.0072)
0.8840 (0.0071)
0.8808 (0.0101)

0.7062 (0.0042
0.7335 (0.0006

0.8866(0.0010)
0.8801(0.0033)
0.8896 (0.0024)

0.9517 (0.0032
0.9583 (0.0082

)
)
0.7762 (0.0061)
0.7613 (0.0156)

0.8842 (0.0103)

)
)
0.9692 (0.0128)
0.9584 (0.0415)

one-shot NAS

SANE

0.8926 (0.0123)

0.7859 (0.0108)

0.9047 (0.0091)

0.9856 (0.0120)

Search to aggregate neighborhood for graph neural network, ICDE 2021



Graph NAS Example: SANE

h3 ,
V' IDENTITY

GAT-SYM
'{ MAX

h

h2 e a
U IDENTITY

GAT

h]_ IDENTITY
v

GAT-GEN-LINEAR
hO

v
(a) Cora.

hy

LSTM

: Z
2 ht v
h:p IDENTITY hv

GAT

h]_ IDENTITY
v

GAT

(b) CiteSeer.

h3 sere
V' IDENTITY

GIN
p CONCAT Z,

h? hy

GCN

1  IDENTITY
hy —

GAT-GEN-LINEAR

0

hy

(¢) PubMed.

h3 pa
V' IDENTITY
COMNCAT

SﬁLE-M EAN

hz
‘U IDENTITY = Y

X

Zy

GIN

h]_ IDENTITY
v

GAT
hy
(d) PPL

Search to aggregate neighborhood for graph neural network, ICDE 2021



Graph NAS Example: AutoSTG

Tasks: NAS for spatial-temporal graphs

Typical example: traffic prediction, time-series prediction, etc.

Cell output

[YAL T T‘F!"-u'l:,,ut] \‘\
Prediction network

L

~ --+ Mixed operation

Candidate
operations

Cell search space

(a) Architecture search space

L=
L - -
Adjacency
1 matrices

Load weights

b

Kernels

el
)

SC-meta
learner

TC-meta
learner

Edge meta
knowledge

Node meta
knowledge

.

Graph
meta
knowledge
learner

Attributed graph
)

(b) Meta learmning for network weight parameters

AutoSTG Neural Architecture Search for Predictions of Spatio-Temporal Graphs, WWW 2021




Graph NAS Example: AutoSTG

[0 Search space: spatial convolution (SC) and temporal convolution (TC)

K P
1 Spatial convolution: diffusion convolution
P | DC(HAW) = ) > (AP HWp,
0 Temporal convolution:  H; = H; x K, k=1 p=1

[0 Zero: not connection
O Identity: for residual connections

AutoSTG Neural Architecture Search for Predictions of Spatio-Temporal Graphs, WWW 2021



Graph NAS Example: AutoSTG

[0 Search strategy: differentiable + meta learning to generate weight parameters of SC and TC

Node . \ \ Node Meta
Attributes ? ? Knowledge
v & v ' vM)

Node Learner 1 Node Learner 2
Edge Edge Meta
Attributes Knowledge
@ g (M)
Edge Leamer 1 L Edge Leamer 2 )

vy

00 Graph Meta Knowledge Learner: improves upon a previous work (Pan et al., KDD 2019)

AutoSTG Neural Architecture Search for Predictions of Spatio-Temporal Graphs, WWW 2021



Graph NAS Example: AutoSTG

Table 3: Predictive performance on PEMS-BAY and METR-LA datasets.

MAE (]) RMSE (])

PEMS-BAY Overall 15 min 30 min 60 min Overall 15 min 30 min 60 min
HA 3.844+0.00 3.844+0.00 3.84+0.00 3.844+0.00 7.16+0.00 7.16+0.00 7.16+0.00 7.16+0.00
GBRT 1.96+0.02 1.49+0.01 1.99+0.02 2.61+0.04 4.48+0.00 3.21+0.00 4.51+0.01 5.76+0.02
GAT—SquSeq 1.744+0.00 1.38+0.01 1.79+0.00 2.26+0.01 4.08+0.01 2.9440.01 4.10+0.01 5.22+0.04
DCRNN 1.59+0.00 1.31+£0.00 1.65+0.01 1.97+0.00 3.70+0.02 2.76+0.01 3.78+0.02 4.60+0.02
Graph WaveNet 1.59+0.00 1.31+0.01 1.65+0.01 1.98+0.03 3.66+0.04 2.75+0.01 3.734+0.04 4.56+0.06
ST-MetaNet™ 1.60+0.01 1.31+0.00 1.66+0.06 1.99+0.01 3.72+0.02 2.78+0.01 3.81+0.01 4.62+0.04
AutoSTG 1.56+0.01 1.31+0.00 1.63+0.01 1.92+0.01 3.57+0.02 2.76+0.01 3.67+0.02 4.38+0.03

METR-LA Overall 15 min 30 min 60 min Overall 15 min 30 min 60 min
HA 4.794+0.00 4.794+0.00 4.79+0.00 4.794+0.00 8.72+0.00 8.724+0.00 8.72+0.00 8.72+0.00
GBRT 3.86+0.01 3.16+0.00 3.85+0.00 4.86+0.01 7.49+0.01 6.05+0.00 7.50+0.00 9.10+0.02
GAT—SquSeq 3.284+0.00 2.83+0.01 3.31+0.00 3.934+0.01 6.66+0.01 5.474+0.01 6.68+0.00 8.03+0.02
DCRNN 3.04+0.01 2.67+0.00 3.08+0.01 3.56+0.01 6.27+0.03 5.18+0.01 6.20+0.03 7.53+0.04
Graph WaveNet 3.05+0.01 2.70+0.01 3.08+0.01 3.55+0.12 6.16+0.03 5.16+0.01 6.20+0.03 7.35+0.05
ST-MetaNet™ 3.00+£0.01 2.65+0.01 3.04+0.01 3.48+0.02 6.16+0.02 5.11+0.01 6.16+0.02 7.37+0.04
AutoSTG 3.02+0.00 2.70+0.01 3.06+0.00 3.47+0.01 6.10+0.01 5.16x0.01 6.17+0.01 7.27+0.01

AutoSTG Neural Architecture Search for Predictions of Spatio-Temporal Graphs, WWW 2021



Graph NAS Example: AutoSTG

15.0 -
12.5 -
2 10.0 -

*# 75 - .

5.0 ®

2.5-
1

PEMS-BAY  METR-LA
Figure 10: The number of SC in the learned architectures.

AutoSTG Neural Architecture Search for Predictions of Spatio-Temporal Graphs, WWW 2021
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Graph NAS Example: Skeleton-based Action Recognition

[0 GNNs are widely used in skeleton-based action recognition

0 However, all the existing methods are manually designed

0 A general framework o o e?(h(z:)) @ v(h(z1))
Vi, J €V, Ap(6]) = S5 gt @ ih(z;))
0 Search space: Dy €7V I

0 Spatial convolution: ¢, ¥ as channel-wise convolution filters
0 Temporal convolution: ¢, ¥ as temporal convolution filters
0 Search algorithm:
modified from CEM-RL
(Pourchot and Sigaud,
ICLR 2019)

Learning Graph Convolutional Network for Skeleton-based Human Action Recognition by Neural Searching, AAAI 2020



Graph NAS Example: GNAS

A new GNN paradigm: feature filtering + neighbor aggregation
Feature filtering: gating mechanism to control the information flow
Sparse filter: F;(H) = QH, Q = diag (MQ([H, Hin]))
Dense filter: F;(H) = Z O H,Z = M,([H, H;,,])
|dentity filter: 7(H) = H
Neighborhood aggregation: mean, max, sum

GNNs Approximation Formula

GCN Houwt = M(Lmean(Hin))

GIN Houo =~ M([Z(Hin)||Fs(Hin)||Lsum (Hin)])
GraphSage Houe =~ M([Z(Hin) || Limean (Hin)])

GAT Hout ~ M(Fo(Lsum (Fs(Hin))))
GatedGCN | Hout & M([Z(Hin) || Fa(Lsum (Fa(Hin)))])

Rethinking Graph Neural Architecture Search from Message-passing, CVPR 2021



Graph NAS Example: GNAS

[0 Search space:
0 Atomic operations: feature filtering and neighbor aggregation

0 Cell architecture: DAG + only one neighbor aggregation per path
1 Nodes only exchange information with first-order neighborhoods
1 Three-level search space: DAG + neighborhood aggregation + DAG

Rethinking Graph Neural Architecture Search from Message-passing, CVPR 2021



Graph NAS Example: GNAS

Overall framework

e~

o

[ Graph Architecture 1 ] Y
|
—{ BN & Add |
III n ’;
i , SESH > A /SN
Graph Architecture K !
N ] | \ :F‘S I’ “F‘d
wes| —f{ovsaw) | B | B
-I-- \\\ \\ﬁ"‘m”t’
( ' \ [ Fusion ]
Graph Architecture N \ *’
'
——{ BN & Add | \\ p—
L . )

An architecture following GAP

Rethinking Graph Neural Architecture Search from Message-passing, CVPR 2021



Graph NAS Example: GNAS

Algorithm: adaptively select depth

Algorithm 1 Search Efficient GNN with Optimal message-
passing Depth
Input: dataset S
Output: graph neural network N

I: Initialize D, as half of average graph diameter of S

2: repeat

3.  Initialize N, as a search network with D,-layer
graph architectures
Optimize the architectures of N, with GNAS on S
Derive a discrete sub-network of N, from N/
D, =D,
Update D,, as the number of graph architectures with
at least one neighbor aggregation in N,
g: untul D; =D,
9: return N,

el ISR A

Rethinking Graph Neural Architecture Search from Message-passing, CVPR 2021



Graph NAS Example: LPGNAS

[0 Consider quantisation in GNNs h* = Act(Aggr(Atten(a”, Linear(w", h*~1))))
0 Quantisation: reduce computation and memory cost pk Qg(Linear(Q.w(wk), Qh(hk—l)))

linear

hftten = Qat(Atten(Qa(ak)a hllicnear))
ht = ACt(Qag(Aggr(hftten)))

Learned low precision graph neural networks, 2021 EuroMLSys workshop



Graph NAS Example: LPGNAS

[0 Search space: micro + macro + quantisation

WEIGHTS ACTIVATIONS
QUANTISATION FRAC BITS TOTAL BITS | QUANTISATION FRAC BITS TOTAL BITS
BINARY 0 ] FIX2.2 2 4
BINARY 0 ] FIX4.4 4 8
TERNARY 0 2 FIX2.2 2 4
TERNARY 0 2 FIX4.4 4 8
TERNARY 0 2 FIX4.8 4 12
FIX1.3 3 4 FIX4.4 4 8
FIX2.2 2 4 FIX4.4 4 8
FIX1.5 5 6 FIX4.4 4 8
FIX3.3 3 6 FIX4.4 4 8
FIX2.4 4 6 FIX4.4 4 8
FIX4.4 4 3 FIX4.4 4 8
FIX4.4 4 8 FIX4.8 8 12
FIX4.4 4 8 FIX8.8 8 16
FIX4.8 8 12 FIX4.8 8 12
FIX4.12 12 16 FIX4.4 4 8
FIX4.12 12 16 FIX4.8 8 12
FIX4.12 12 16 FIX8.8 8 16

[0 Search strategy: differentiable

Learned low precision graph neural networks, 2021 EuroMLSys workshop



Graph NAS Example: LPGNAS

CORA CITESEER PUBMED

METHOD QUAN ACCURACY SI1ZE ACCURACY SI1ZE ACCURACY SI1ZE
GRAPHSAGE FLOAT 74.5 + 0.0% 92.3KB 75.34+0.0% 237.5KB 85.3+0.1% 32.2KB
GRAPHSAGE WI10A12 74.3 4+ 0.1% 28.8KB 75.1 £ 0.1% 74.2KB 85.0 & 0.0% 10.1KB
GAT FLOAT 88.9 + 0.0% 369.5KB 75.9 4+ 0.0% 950.3KB 86.1 &+ 0.0% 129.6KB
GAT W4 AR 88.8 £ 0.1% 16.2KB 68.0 = 0.1% 118.8KB 82.0 £ 0.0% 16.2KB
JKNET FLOAT 88.7+0.0%  214.9KB 75.54+0.0% 505.2KB  87.6 £0.0% 94.5KB
JKNET WOAR 8.7 + 0.1% 40.3KB 73.2 +0.1% 94.7KB 86.1 £ 0.1% 17.7KB
PDNAS-2 FLOAT 89.3+ 0.1% 192.2KB 76.3 £ 0.3% 478.6KB 89.1 + 0.2% 72.8KB
PDNAS-3 FLOAT 89.3+ 0.1% 200.0KB 75.5 4+ 0.3% 494 4KB 89.1 + 0.2% 81.4KB
PDNAS-4 FLOAT 89.8 + 0.3% 205.0KB 75.6 + 0.2% 500.0KB 89.2 4+ 0.1% 102.7KB
LPGNAS MIXED 89.8 + 0.0% 67.3KB 76.2 £ 0.1% 56.5KB 89.6 +0.1% 15.6KB

Learned low precision graph neural networks, 2021 EuroMLSys workshop



Graph NAS Example: Design Space

0 A systematic study of GNN design space and task space

(a) GNN Design Space

(b) GNN Task Space

Intra-layer Design: 4 dims Inter-layer Design: 4 dims Task Similarity Metric
_____________________________ Anchor Model Similarity
P Performance ranking to Task A
re- TaskA | M, | M, | My | M, | M 10
process : 2 S 1 s
layers Task B | My | My | M, | M, | M 0.8
TaskC | Mg | M, | My | Mg | M, -0.4
""" Layer | Building Task Space for GNN Tasks
connectivity Task Space ° ::SEELCampurers
5 ; | : $ i
i | GNN Layer |: 7 c'cf;'uifrcs
Aggregation Coonmin Message a’xx . goauthanhysics
H . 0.5 ora
GNN Layer |: Passing T PROTEINS
. . . . 5 i layers & % ° BZR
Learnlng Conflguratlon: 4 dims Trzzzzzzizzzy e e L & 007 e X Ccox2
‘ o CD
Batch size MLP Layer Post- oo Ax ENZYMES
Learning rate process ' e B oC : 's":;:free
Optimizer MLP Layer layers ] @0 o malword
Training epochs L e ' ®e Task lovel
] i ) PC; o 1§ 3 H @ Node-level
(c) Best GNN Designs Found in Different Tasks " *  Craphievel
Pre-process layers | Message passing layers | Post-process layers | Layer connectivity Aggregation
Task A: graph-IMDB 2 8 2 skip-sum sum
Task B: node-smallworld 1 8 2 skip-sum sum
Task C: node-CiteSeer 2 6 2 skip-cat mean

Design Space for Graph Neural Networks, NeurlPS 2020




Graph NAS Example: Design Space

0 Key results:

Design Space for Graph Neural Networks, NeurlPS 2020



Graph NAS Example: Design Space

0 Key results:

Design Space for Graph Neural Networks, NeurlPS 2020



AutoAttend: Overview

Output O O Q) output
{%ttentiml C::mlpmatien {ﬂattention C Lmnputatim}
Query Key Value Query Key Value
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(a) hand-crafted attention representation (b) automated attention representation

Design self-attention models automatically by searching for

the best attention representations

Guan Chaoyu, Xin Wang and Wenwu Zhu.
AutoAttend: Automated Attention Representation Search. ICML 2021.



AutoAttend: Challenges

1 How to define the most suitable search space?

1 Joint optimization of attention representation and other functional components
[l The search space should be flexible and expressive

[0 Relatively low complexity and high feasible architecture density
1 How to consider the special characteristics of each sub-architecture In

parameter sharing?

[l Parameters of key, query, value, and common feature extraction operations have

different functionalities



AutoAttend: Search Space Design

[ output state ]

[ ] hiddenstate [ ]operation [ | addition layer

addition layer [ ] attention layer [ ]/ — feature connection

B/ > query connection [/ — key connection
op 1 op 2

|
|
i
[ i
|
|
i
i
i
I _:
i )
/ [ output state ] ; ) — — — R J— —
t ; |
i 7
1
|
i
i
I
1
i
i

[/ — value connection

: o

[ attention layer ] 5 N E E R E E 3 E =
E 7 2 15[ AS N3 |8 g e

k. M e m T -h '.J'. p=1

(Q)addfﬁon layer and attention layer (b) example architecture and prior constraints

1 Attention layer is defined to allow 1 A set of layers with optional
model to have attention aggregation  connections between any two layers



AutoAttend: Improve Density

[l Skeleton constraint: each layer must have one connection to its previous layer
] Key-Value Constraint: the key and value should have the same input layer

1 Non-Zero Constraint: the important connections should not be zero



143

AutoAttend: Context-aware Parameter Sharing

] One-shot super-net based optimization relaxation

a® = argmingc 4 Lyqr(a, w™),

s.t. w' = argmingcw Eqor(a) Lrain(a. W),

[l Share parameters according to their contexts

1
| un-share

un-share ¢hare |
1

[ Evolutionary search tor best architectures



AutoAttend: Experiments

] Considerable improvement for natural language processing and graph

representation learning tasks

[

MODEL ‘ Transductive | Inductive
| CORA | CITESEER | PUBMED |  PPI
GCN 81.5 70.3 79.5 97.7
GAT 83.1 72.5 79.0 07.5
ARMA 834 72.5 78.9 98.5
APPNP 83.3 71.8 80.2 97.8
GRAPHNAST | 80.4 73.0 80.0 98.5
AGNN 83.6 73.8 79.7 99.2
OURS-PS 83.9 72.7 79.6 98.9
OURS 83.9 73.0 80.6 99.3




AutoAttend: Ablation Studies

1 Ablation studies on the attention layer and context-aware parameter sharing strategies

SPACE SST CoORA CITESEER PUBMED
BASELINE | 81.15 81.80 72 18 81.04

[ FULL 81.68 82.96 72.90 81.04
CONTEXT SST CorRA CITESEER PUBMED
NC 68.68 77.09 63.68 72.72
SC 68.96 77.81 63.62 73.31
TC 69.38 78.50 64.22 77.54

[ FC 69.40 78.61 64.23 77.72 ]

[l Using attention layer and considering both the input layer and

output layer can increase performance



Outline

[0 Graph Hyper-parameter Optimization
[0 Graph Neural Architecture Search
0 Automated Graph Learning Libraries



AutoML library on Graph

0 Graph related 01 AutoML related

@ PyTorch NA

Neural Network Intelligence

A< AutoKeras

Gap!

% PyTorch BigGraph
graph-learn




Introduction — AutoGL

0 We design the first autoML framework & toolkit for machine learning on graphs

AutoGL

Open source Easy to use Flexible to be extended

https://mn.cs.Tsinghua.edu.cn/AutoGL
https://github.com/THUMNLab/AutoGL




Modular Design

———————————————————————————— —---..I

AutoGL Solver

Hyper-

I

I

Parameter |

Neural Optimization

AT LRI |:> Architecture |:> Auto Ensemble | |
Engineering Search |
I

I

V

Model Training

0Keymodules; N\M———————— —— — — — o ——— v

0 AutoGL Dataset: manage graph datasets
0 AutoGL Solver: a high-level API to control the overall pipeline

0 Five functional modules:
[0 Auto Feature Engineering,
0 Neural Architecture Search,
0 Hyper-parameter Optimization
[0 Model Training
0 Auto Ensemble



| Parameter
1
| I Neural Optimization
> | :|:> Architecture |:> |:> Auto Ensemble
i| Engineering |
: I Search { }
\ !

Feature Engineering
I( AutoGL Solver

I Hyper-

—————————————

Model Training

—— EE—— EE——— T EE—— EE—— E— — —

Graphlet, EigenGNN,
<I Pagerank, Onehot, ...
Generators

Node-level Pyg.transform

Feature
Engineering

Selectors > Filter, GBDT, ...

Graph- < Netlsd
level NetworkX




Neural Architecture Search

Hyper-

Auto Feature
Engineering

Search

|

: Neural
|::>= Architecture

i

\

Parameter

———————————————————————————— —---..I

AutoGL Solver

——————————————

Model Training

1

i Optimization
[

| {

I

I

I

>[> Auto Ensemble :
| .
I

I

Random

ENAS
One-Shot Darts

Vanilla RL
RL |< I
GraphNAS

Algorithms
Neural
Architecture
Search
Search

Space

Macro

GraphNas |<

/\

Single Path

Micro




Hyper-Parameter Optimization

Auto Feature
Engineering

Hyper-Parameter
Optimization

General-
Purpose

Parameter

Hyper-

Neural ] Optimization ]
|:> Architecture |:> [t ’
Search

v

Graph Aware

V

\ 4

4 )
Random Bayes
Grid CAMES
Anneal TPE
\_ y,
AUtoNE

—— EE—— EE——— T EE—— EE—— E— — —



Model Training

( ———————————————————————————— -
l
AutoGL Solver
| |
I Hyper- I
- I Parameter I
Neural Optimization
$" |:> E> |[ A“m.Feat.“re J E> [ Architecture J |:> C _____________ > |:> [Auto Ensemble] |
D Engineering s \
ataset | Search |
Data | i Model Training |! |
I \ i I
I I

Trainer
Learning rate
Epochs
Optimizer
Loss

Early Stopping

Model

 Forward

Currently supported models

1 Node classification
1 Link Prediction
1 Graph classification

* Ops & Architectures
* Dropout & Hidden



H—
Ensemble

I
| Hyper- e .
I Parameter ( ‘I
Neural Optimization ! !
|:> AutoGL |:> | ‘%um. Feat.ure |:> Architecture |:> |::>: Auto Ensemble :l
Dataset | ngineering Search E E
Data | Model Training M ',l
| I
I I
N e e e e e e e e e e e e . o — . — — — — — — — — — S
[
[
| \
I -

Meta-learner

voting | stacking



Example Results

Table 1: The results of node classification Table 2: The results of graph classification
Model Cora CiteSeer PubMed Model MUTAG PROTEINS IMDB-B
oy STl 9=l IBTE00 ThopKPooling 808+£71 695+44 710£55

GraphSAGE 745+ 1.8 67.2+0.9 76.8+0.6 GIN 82.7+6.9  66.5x39  69.1x3.7
AutoGL 832106 724106 793104 AutoGL 876+6.0 733+44 T721+50
Table 3: The results of different HPO methods for node classification

Cora CiteSeer PubMed

Method Trials GCN GAT GCN GAT GCN GAT
None 80.9 £ 0.7 82.3 £ 0.7 70.9 £ 0.7 71.9 +- 0.6 7.7 + 0.6 77.9+0.4
1 81.0+ 0.6 81.4+1.1 70.4 4+ 0.7 70.1 + 1.1 78.3 + 0.8 76.9 + 0.8
random 10 82.0+ 0.6 82.5 4+ 0.7 71.5+ 0.6 72.2+ 0.7 79.1 = 0.3 78.2 1+ 0.3
50 81.8+ 1.1 83.2+0.7 T71.1+1.0 72.1+ 1.0 792+ 0.4 78.2+0.4
1 81.8 + 0.6 81.9+1.0 70.1 + 1.2 71.0 £ 1.2 78.7 + 0.6 77.7T + 0.6
TPE 10 82.0+ 0.7 82.3+1.2 71.2 4+ 0.6 72.1 + 0.7 79.0+ 0.4 78.3 1+ 0.4
50 82.1+1.0 83.2+ 0.8 72.4+ 0.6 71.6 = 0.8 79.1 = 0.6 78.1+0.4




AutoGL Plans

Incoming new features:
0 DGL backend

0 More large-scale graph support
O E.g., sampling, distributed, etc.

[0 More graph tasks

O E.g., heterogenous graphs, spatial-temporal graphs, etc.

Warmly welcome all feedbacks and suggestions!

Contact: autogl@tsinghua.edu.cn



mailto:autogl@tsinghua.edu.cn

Section Summary

0 Graph Hyper-parameter Optimization
0 Graph Neural Architecture Search
0 Automated Graph Learning Librawries

0 Open Problems:

0 Graph models for AutoML
0 E.g., regard NN as Directed Acyclic Graph (DAG)
0 E.g., using GNNs as surrogate models

0 Robustness and explainability
0 Hardware-aware models
0 Comprehensive evaluation protocols



Automated Graph Learning Survey

Ziwei Zhang, Xin Wang, Wenwu Zhu.
Automated Machine Learning on Graphs: A Survey. |JCAI 2021.

Paper collection: https://github.com/THUMNLab/awesome-auto-graph-learning



Summary

Learn vectorized representation of nodes/graphs End-to-end learning paradigms on graphs
Preserve structures and properties Balance structures and attributes/features

Network

Embedding GNN

Automated Graph
Machine Learning

The automation of designing learning algorithms on graphs
Handle large-scale and complicated graph structures
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