IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 1, JANUARY 2022 249

Deep Learning on Graphs: A Survey

Ziwei Zhang", Peng Cui

, and Wenwu Zhu

, Fellow, IEEE

Abstract—Deep learning has been shown to be successful in a number of domains, ranging from acoustics, images, to natural
language processing. However, applying deep learning to the ubiquitous graph data is non-trivial because of the unique characteristics
of graphs. Recently, substantial research efforts have been devoted to applying deep learning methods to graphs, resulting in beneficial
advances in graph analysis techniques. In this survey, we comprehensively review the different types of deep learning methods on
graphs. We divide the existing methods into five categories based on their model architectures and training strategies: graph recurrent
neural networks, graph convolutional networks, graph autoencoders, graph reinforcement learning, and graph adversarial methods. We
then provide a comprehensive overview of these methods in a systematic manner mainly by following their development history. We
also analyze the differences and compositions of different methods. Finally, we briefly outline the applications in which they have been

used and discuss potential future research directions.

Index Terms—Graph data, deep learning, graph neural network, graph convolutional network, graph autoencoder

1 INTRODUCTION

OVER the past decade, deep learning has become the
“crown jewel” of artificial intelligence and machine
learning [1], showing superior performance in acoustics [2],
images [3] and natural language processing [4], etc. The
expressive power of deep learning to extract complex pat-
terns from underlying data is well recognized. On the other
hand, graphs' are ubiquitous in the real world, representing
objects and their relationships in varied domains, including
social networks, e-commerce networks, biology networks,
traffic networks, and so on. Graphs are also known to have
complicated structures that can contain rich underlying val-
ues [5]. As a result, how to utilize deep learning methods to
analyze graph data has attracted considerable research
attention over the past few years. This problem is non-trivial
because several challenges exist in applying traditional
deep learning architectures to graphs:

o Irreqular structures of graphs. Unlike images, audio,
and text, which have a clear grid structure, graphs
have irregular structures, making it hard to general-
ize some of the basic mathematical operations to
graphs [6]. For example, defining convolution and
pooling operations, which are the fundamental oper-
ations in convolutional neural networks (CNNs), for
graph data is not straightforward. This problem is
often referred to as the geometric deep learning
problem [7].

1. Graphs are also called networks such as in social networks. In this
paper, we use two terms interchangeably.

o The authors are with the Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China. E-mail: zw-zhang16@mails.
tsinghua.edu.cn, {cuip, wwzhu j@tsinghua.edu.cn.

Manuscript received 2 Jan. 2019; revised 2 Mar. 2020; accepted 12 Mar. 2020.
Date of publication 17 Mar. 2020; date of current version 7 Dec. 2021.
(Corresponding authors: Peng Cui and Wenwu Zhu.)

Recommended for acceptance by L. Chen.

Digital Object Identifier no. 10.1109/TKDE.2020.2981333

e Heterogeneity and diversity of graphs. A graph itself can
be complicated, containing diverse types and prop-
erties. For example, graphs can be heterogeneous or
homogenous, weighted or unweighted, and signed
or unsigned. In addition, the tasks of graphs also
vary widely, ranging from node-focused problems
such as node classification and link prediction to
graph-focused problems such as graph classification
and graph generation. These diverse types, proper-
ties, and tasks require different model architectures
to tackle specific problems.

e Large-scale graphs. In the big-data era, real graphs can
easily have millions or billions of nodes and edges;
some well-known examples are social networks and
e-commerce networks [8]. Therefore, how to design
scalable models, preferably models that have a linear
time complexity with respect to the graph size, is a
key problem.

e Incorporating interdisciplinary knowledge. Graphs are
often connected to other disciplines, such as biology,
chemistry, and social sciences. This interdisciplinary
nature provides both opportunities and challenges:
domain knowledge can be leveraged to solve specific
problems but integrating domain knowledge can
complicate model designs. For example, when gen-
erating molecular graphs, the objective function and
chemical constraints are often non-differentiable;
therefore gradient-based training methods cannot
easily be applied.

To tackle these challenges, tremendous efforts have been
made in this area, resulting in a rich literature of related
papers and methods. The adopted architectures and train-
ing strategies also vary greatly, ranging from supervised to
unsupervised and from convolutional to recursive. How-
ever, to the best of our knowledge, little effort has been
made to systematically summarize the differences and con-
nections between these diverse methods.

1041-4347 © 2020 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 16,2022 at 04:37:25 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2451-843X
https://orcid.org/0000-0003-2451-843X
https://orcid.org/0000-0003-2451-843X
https://orcid.org/0000-0003-2451-843X
https://orcid.org/0000-0003-2451-843X
https://orcid.org/0000-0003-2957-8511
https://orcid.org/0000-0003-2957-8511
https://orcid.org/0000-0003-2957-8511
https://orcid.org/0000-0003-2957-8511
https://orcid.org/0000-0003-2957-8511
https://orcid.org/0000-0003-2236-9290
https://orcid.org/0000-0003-2236-9290
https://orcid.org/0000-0003-2236-9290
https://orcid.org/0000-0003-2236-9290
https://orcid.org/0000-0003-2236-9290
mailto:zw-zhang16@mails.tsinghua.edu.cn
mailto:zw-zhang16@mails.tsinghua.edu.cn
mailto:cuip@tsinghua.edu.cn
mailto:wwzhu@tsinghua.edu.cn

250 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 1, JANUARY 2022

Graph Recurrent Neural Networks |

Graph Convolutional Networks |

Deep Learning

on Graphs Graph Autoencoders |

Graph Reinforcement Learning |

Graph Adversarial Methods |

Fig. 1. A categorization of deep learning methods on graphs. We divide
the existing methods into five categories: graph recurrent neural net-
works, graph convolutional networks, graph autoencoders, graph rein-
forcement learning, and graph adversarial methods.

In this paper, we try to fill this knowledge gap by compre-
hensively reviewing deep learning methods on graphs. Spe-
cifically, as shown in Fig. 1, we divide the existing methods
into five categories based on their model architectures and
training strategies: graph recurrent neural networks (Graph
RNNs), graph convolutional networks (GCNs), graph
autoencoders (GAEs), graph reinforcement learning (Graph
RL), and graph adversarial methods. We summarize some of
the main characteristics of these categories in Table 1 based
on the following high-level distinctions. Graph RNNs cap-
ture recursive and sequential patterns of graphs by modeling
states at either the node-level or the graph-level. GCNs
define convolution and readout operations on irregular
graph structures to capture common local and global struc-
tural patterns. GAEs assume low-rank graph structures and
adopt unsupervised methods for node representation learn-
ing. Graph RL defines graph-based actions and rewards to
obtain feedbacks on graph tasks while following constraints.
Graph adversarial methods adopt adversarial training tech-
niques to enhance the generalization ability of graph-based
models and test their robustness by adversarial attacks.

In the following sections, we provide a comprehensive
and detailed overview of these methods, mainly by follow-
ing their development history and the various ways these
methods solve the challenges posed by graphs. We also ana-
lyze the differences between these models and delve into
how to composite different architectures. Finally, we briefly
outline the applications of these models, introduce several
open libraries, and discuss potential future research direc-
tions. In the appendix, we provide a source code repository,
analyze the time complexity of various methods discussed
in the paper, and summarize some common applications.

Related Works. Several previous surveys are related to our
paper. Bronstein ef al. [7] summarized some early GCN meth-
ods as well as CNNs on manifolds and studied them compre-
hensively through geometric deep learning. Battaglia et al. [9]
summarized how to use GNNs and GCNss for relational rea-
soning using a unified framework called graph networks,
Lee ef al. [10] reviewed the attention models for graphs,
Zhang et al. [11] summarized some GCNs, and Sun et al. [12]
briefly surveyed adversarial attacks on graphs. Our work dif-
fers from these previous works in that we systematically and
comprehensively review different deep learning architectures
on graphs rather than focusing on one specific branch. Concur-
rent to our work, Zhou et al. [13] and Wu et al. [14] surveyed
this field from different viewpoints and categorizations. Spe-
cifically, neither of their works consider graph reinforcement

learning or graph adversarial methods, which are covered in
this paper.

Another closely related topic is network embedding,
aiming to embed nodes into a low-dimensional vector
space [15], [16], [17]. The main distinction between network
embedding and our paper is that we focus on how different
deep learning models are applied to graphs, and network
embedding can be recognized as a concrete application
example that uses some of these models (and it uses non-
deep-learning methods as well).

The rest of this paper is organized as follows. In Section 2,
we introduce the notations used in this paper and provide pre-
liminaries. Then, we review Graph RNNs, GCNs, GAEs,
Graph RL, and graph adversarial methods in Sections 3, 4, 5, 6,
and 7, respectively. We conclude with a discussion in Section 8.

2 NOTATIONS AND PRELIMINARIES

Notations. In this paper, a graph” is represented as G = (V, E)
where V = {v,...,uy} is a set of N =|V| nodes and
E CV xVisasetof M = |E| edges between nodes. We use
A € RV to denote the adjacency matrix, whose ith row, jth
column, and an element are denoted as A(4,:), A(:, j), A(i,J),
respectively. The graph can be either directed or undirected
and weighted or unweighted. In this paper, we mainly con-
sider unsigned graphs; therefore, A(i,j) > 0. Signed graphs
will be discussed in future research directions. We use F* and
F” to denote features of nodes and edges, respectively. For
other variables, we use bold uppercase characters to denote
matrices and bold lowercase characters to denote vectors, e.g.,
amatrix X and a vector x. The transpose of a matrix is denoted
as X' and the element-wise multiplication is denoted as
X1 ® Xs. Functions are marked with curlicues, e.g., F(-).

To better illustrate the notations, we take social networks as
an example. Each node v; € V' corresponds to a user, and the
edges E correspond to relations between users. The profiles of
users (e.g., age, gender, and location) can be represented as
node features F” and interaction data (e.g., sending messages
and comments) can be represented as edge features F.

Preliminaries. The Laplacian matrix of an undirected graph is
defined as L = D — A, where D € R"*¥ is a diagonal degree
matrix with D(i,i) =3, A(i,). Its eigendecomposition is
denoted as L = QAQT, where A €¢ RV*V isa diagonal matrix
of eigenvalues sorted in ascending order and Q € RV*V are
the corresponding eigenvectors. The transition matrix is
defined as P = D' A, where P(i, j) represents the probability
of a random walk starting from node v; landing at node v;. The
k-step neighbors of node v; are defined as N';.(i) = {j|D(4,j) <
k}, where D(1, j) is the shortest distance from node v; to v;, i.e.,
N (2) is a set of nodes reachable from node v; within k-steps.
To simplify the notation, we omit the subscript for the immedi-
ate neighborhood, i.e., N (i) = Ny (i).

For a deep learning model, we use superscripts to denote
layers, e.g., H'. We use fi to denote the dimensionality of
the layer [(i.e., H' € RV*/1). The sigmoid activation function
is defined as o(z) = 1/(1 + e~ ”) and the rectified linear unit
(ReLU) is defined as ReLU(z) = maxz(0,z). A general ele-
ment-wise nonlinear activation function is denoted as p(+).
In this paper, unless stated otherwise, we assume all

2. We consider only graphs without self-loops or multiple edges.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 16,2022 at 04:37:25 UTC from IEEE Xplore. Restrictions apply.

ZHANG ETAL.: DEEP LEARNING ON GRAPHS: A SURVEY

251

TABLE 1
Main Distinctions Among Deep Learning Methods on Graphs

Category Basic Assumptions/Aims

Main Functions

Graph recurrent neural networks
Graph convolutional networks
Graph autoencoders

Graph reinforcement learning
Graph adversarial methods

Low-rank structures of graphs

Recursive and sequential patterns of graphs
Common local and global structural patterns of graphs

Feedbacks and constraints of graph tasks
The generalization ability and robustness of graph-based models

Definitions of states for nodes or graphs
Graph convolution and readout operations
Unsupervised node representation learning
Graph-based actions and rewards

Graph adversarial trainings and attacks

functions are differentiable, allowing the model parameters
O to be learned through back-propagation [18] using com-
monly adopted optimizers such as Adam [19] and training
techniques such as dropout [20]. We denote the sample size
as s if a sampling technique is adopted. We summarize the
notations in Table 2

The tasks for learning a deep model on graphs can be
broadly divided into two categories:

o Node-focused tasks: These tasks are associated with indi-
vidual nodes in the graph. Examples include node clas-
sification, link prediction, and node recommendation.

o Graph-focused tasks: These tasks are associated with
the entire graph. Examples include graph classifica-
tion, estimating various graph properties, and gener-
ating graphs.

Note that such distinctions are more conceptually than
mathematically rigorous. Some existing tasks are associated
with mesoscopic structures such as community detec-
tion [21]. In addition, node-focused problems can sometimes
be studied as graph-focused problems by transforming the
former into egocentric networks [22]. Nevertheless, we will
explain the differences in algorithm designs for these two
categories when necessary.

3 GRAPH RECURRENT NEURAL NETWORKS

Recurrent neural networks (RNNs) such as gated recurrent
units (GRU) [30] or long short-term memory (LSTM) [31]
are de facto standards in modeling sequential data. In this
section, we review Graph RNNs which can capture recur-
sive and sequential patterns of graphs. Graph RNNs can be
broadly divided into two categories: node-level RNNs and

TABLE 2
A Table for Commonly Used Notations
G=(V,E) A graph
N, M The number of nodes and edges
V=A_v,...,on} The set of nodes
F' FF The attributes/features of nodes and edges

A The adjacency matrix

D(s,) Z A(i,j) The diagonal degree matrix
L= The Laplacian matrix
QAQT The eigendecomposition of L
P=D" 1A The transition matrix
Ni(i), N (2) The k-step and 1-step neighbors of v;
H' The hidden representatlon in the [th layer
fi The dimensionality of H'
o) Some non-linear activation function
X; ® Xy The element-wise multiplication
(C] Learnable parameters
s The sample size

graph-level RNNs. The main distinction lies in whether the
patterns lie at the node-level and are modeled by node
states, or at the graph-level and are modeled by a common
graph state. The main characteristics of the methods sur-
veyed are summarized in Table 3.

3.1 Node-Level RNNs

Node-level RNNs for graphs, which are also referred to as
graph neural networks (GNN’s)®, can be dated back to the
“pre-deep-learning” era [23], [32]. The idea behind a GNN
is simple: to encode graph structural information, each
node v; is represented by a low-dimensional state vector s;.
Motivated by recursive neural networks [33], a recursive
definition of states is adopted [23]:

= Y Fl(si,s;,F/,F/F), @
JEN(3)

where F(-) is a parametric function to be learned. After obtain-
ing s;, another function O(-) is applied to get the final outputs:

9 = O(s;, F). (2)

For graph-focused tasks, the authors of [23] suggested add-
ing a special node with unique attributes to represent the
entire graph. To learn the model parameters, the following
semi-supervised* method is adopted: after iteratively solving
Eq. (1) to a stable point using the Jacobi method [34], one gra-
dient descent step is performed using the Almeida-Pineda
algorithm [35], [36] to minimize a task-specific objective func-
tion, for example, the squared loss between the predicted val-
ues and the ground-truth for regression tasks; then, this
process is repeated until convergence.

Using the two simple equations in Egs. (1) and (2), GNN
plays two important roles. In retrospect, a GNN unifies
some of the early methods used for processing graph data,
such as recursive neural networks and Markov chains [23].
Looking toward the future, the general idea underlying
GNNSs has profound inspirations: as will be shown later,
many state-of-the-art GCNs actually have a formulation
similar to Eq. (1) and follow the same framework of
exchanging information within the immediate node neigh-
borhoods. In fact, GNNs and GCNs can be unified into
some common frameworks, and a GNN is equivalent to a
GCN that uses identical layers to reach stable states. More
discussion will be provided in Section 4.

Although they are conceptually important, GNNs have
several drawbacks. First, to ensure that Eq. (1) has a unique

3. Recently, GNNs have also been used to refer to general neural
networks for graph data. We follow the traditional naming convention
and use GNN:s to refer to this specific type of Graph RNNSs.

4.1t is called semi-supervised because all the graph structures and
some subset of the node or graph labels is used during training.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 16,2022 at 04:37:25 UTC from IEEE Xplore. Restrictions apply.

252 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 1, JANUARY 2022

TABLE 3
The Main Characteristics of Graph Recurrent Neural Network (Graph RNNs)

Category Method Recursive/sequential patterns of graphs Time Complexity =~ Other Improvements
GNN [23] MIy) -

Node-level GGS-NNs [24] A recursive definition of node states MT) Sequence outputs
SSE [25] avgS) -

You et al. [26]

Generate nodes and edges in an autoregressive manner

o(
o(
o(
O(N?) -
o(
o(
o(

Graph-level DGNN [27] Capture the time dynamics of the formation of nodes and edges Md,,) -
RMGCNN [28] Recursively reconstruct the graph M)or O(MN) GCN layers
Dynamic GCN [29] Gather node representations in different time slices Mt) GCN layers

solution, F(-) must be a “contraction map” [37],i.e.,, 3,0 <
u < 1sothat

[F () = FWll < ulle = yl, Vo, y. @)

Intuitively, a “contraction map” requires that the distance
between any two points can only “contract” after the F(-)
operation, which severely limits the modeling ability. Sec-
ond, because many iterations are needed to reach a stable
state between gradient descend steps, GNNs are computa-
tionally expensive. Because of these drawbacks and perhaps
a lack of computational power (e.g., the graphics processing
unit, GPU, was not widely used for deep learning in those
days) and lack of research interests, GNNs did not become
a focus of general research.

A notable improvement to GNNs is gated graph
sequence neural networks (GGS-NNs) [24] with the follow-
ing modifications. Most importantly, the authors replaced
the recursive definition in Eq. (1) with a GRU, thus remov-
ing the “contraction map” requirement and supporting
modern optimization techniques. Specifically, Eq. (1) is
adapted as follows:

s =1-z")os!™ 1+ o5, (4)
where z is calculated by the update gate, s is the candidate
for updating, and ¢ is the pseudo time. Second, the authors
proposed using several such networks operating in
sequence to produce sequence outputs and showed that
their method could be applied to sequence-based tasks such
as program verification [38].

SSE [25] took a similar approach as Eq. (4). However,
instead of using a GRU in the calculation, SSE adopted sto-
chastic fixed-point gradient descent to accelerate the train-
ing process. This scheme basically alternates between
calculating steady node states using local neighborhoods
and optimizing the model parameters, with both calcula-
tions in stochastic mini-batches.

3.2 Graph-Level RNNs
In this subsection, we review how to apply RNNs to capture
graph-level patterns, e.g., temporal patterns of dynamic
graphs or sequential patterns at different levels of graph
granularities. In graph-level RNNSs, instead of applying one
RNN to each node to learn the node states, a single RNN is
applied to the entire graph to encode the graph states.

You et al. [26] applied Graph RNNs to the graph genera-
tion problem. Specifically, they adopted two RNNs: one to

generate new nodes and the other to generate edges for the
newly added node in an autoregressive manner. They
showed that such hierarchical RNN architectures learn
more effectively from input graphs than do the traditional
rule-based graph generative models while having a reason-
able time complexity.

To capture the temporal information of dynamic graphs,
dynamic graph neural network (DGNN) [27] was proposed
that used a time-aware LSTM [39] to learn node representa-
tions. When a new edge is established, DGNN used the
LSTM to update the representation of the two interacting
nodes as well as their immediate neighbors, i.e., considering
the one-step propagation effect. The authors showed that
the time-aware LSTM could model the establishing orders
and time intervals of edge formations well, which in turn
benefited a range of graph applications.

Graph RNN can also be combined with other architec-
tures, such as GCNs or GAEs. For example, aiming to tackle
the graph sparsity problem, RMGCNN [28] applied an
LSTM to the results of GCNs to progressively reconstruct a
graph as illustrated in Fig. 2. By using an LSTM, the infor-
mation from different parts of the graph can diffuse across
long ranges without requiring as many GCN layers.
Dynamic GCN [29] applied an LSTM to gather the results of
GCNs from different time slices in dynamic networks to
capture both the spatial and temporal graph information.

4 GRAPH CONVOLUTIONAL NETWORKS

Graph convolutional networks (GCNs) are inarguably the
hottest topic in graph-based deep learning. Mimicking
CNNs, modern GCNs learn the common local and global
structural patterns of graphs through designed convolu-
tion and readout functions. Because most GCNs can be
trained with task-specific loss via backpropagation (with a

XD — X0 4 gx®

@ ax®
'
%

-7

v

Fig. 2. The framework of RMGCNN (reprinted from [28] with permission).
RMGCNN includes an LSTM in the GCN to progressively reconstruct the
graph. X!, X!, and dX' represent the estimated matrix, the outputs of
GCNs, and the incremental updates produced by the RNN at iteration ¢,
respectively. MGCNN refers to a multigraph CNN.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 16,2022 at 04:37:25 UTC from IEEE Xplore. Restrictions apply.

ZHANG ETAL.: DEEP LEARNING ON GRAPHS: A SURVEY 253
TABLE 4

A Comparison Among Different Graph Convolutional Networks (GCNs)
Method Type Convolution Readout T.C. M.G. Other Characteristics
Bruna et al. [40] Spectral Interpolation kernel Hierarchical clustering + FC ~ O(N?®) No -
Henaff et al. [41] Spectral Interpolation kernel Hierarchical clustering + FC ~ O(N?) No Constructing the graph
ChebNet [42] Spectral/Spatial ~ Polynomial Hierarchical clustering O(M) Yes -
Kipf&Welling [43] Spectral/Spatial ~ First-order - O(M) - -
CayletNet [44] Spectral Polynomial Hierarchical clustering + FC ~ O(M) No -
GWNN [45] Spectral Wavelet transform - O(M) No -
Neural FPs [46] Spatial First-order Sum O(M) Yes -
PATCHY-SAN [47] Spatial Polynomial + an order An order + pooling O(Mlog N) Yes A neighbor order
LGCN [48] Spatial First-order + an order - O(M) Yes A neighbor order
SortPooling [49] Spatial First-order An order + pooling O(M) Yes A node order
DCNN [50] Spatial Polynomial diffusion Mean O(N?) Yes Edge features
DGCN [51] Spatial First-order + diffusion - O(N?) - -
MPNNSs [52] Spatial First-order Set2set O(M) Yes A general framework
GraphSAGE [53] Spatial First-order + sampling - O(Nsh) Yes A general framework
MoNet [54] Spatial First-order Hierarchical clustering O(M) Yes A general framework
GNs [9] Spatial First-order A graph representation O(M) Yes A general framework
Kearnes et al. [55] Spatial Weave module Fuzzy histogram O(M) Yes Edge features
DiffPool [56] Spatial Various Hierarchical clustering O(N?) Yes Differentiable pooling
GAT [57] Spatial First-order - O(M) Yes Attention
GaAN [58] Spatial First-order - O(Nsh) Yes Attention
HAN [59] Spatial Meta-path neighbors - O(My) Yes Attention
CLN [60] Spatial First-order - O(M) - -
PPNP [61] Spatial First-order - O(M) - Teleportation connections
JK-Nets [62] Spatial Various - O(M) Yes Jumping connections
ECC [63] Spatial First-order Hierarchical clustering O(M) Yes Edge features
R-GCNs [64] Spatial First-order - O(M) - Edge features
LGNN [65] Spatial First-order + LINE graph - O(M) - Edge features
PinSage [66] Spatial Random walk - O(Nsh) - Neighborhood sampling
StochasticGCN [67] ~ Spatial First-order + sampling - O(Ns") - Neighborhood sampling
FastGCN [68] Spatial First-order + sampling - O(NsL) Yes Layer-wise sampling
Adapt [69] Spatial First-order + sampling - O(NsL) Yes Layer-wise sampling
Lietal. [70] Spatial First-order - O(M) - Theoretical analysis
SGC [71] Spatial Polynomial - O(M) Yes Theoretical analysis
GENN [72] Spatial Polynomial - O(M) Yes Theoretical analysis
GIN [73] Spatial First-order Sum + MLP O(M) Yes Theoretical analysis
DGI [74] Spatial First-order - O(M) Yes Unsupervised training

T.C. = Time Complexity, M.G. = Multiple Graphs.

few exceptions such as the unsupervised training method
in [74]), we focus on the adopted architectures. We first
discuss the convolution operations, then move to the read-
out operations and some other improvements. We summa-
rize the main characteristics of GCNs surveyed in this
paper in Table 4.

4.1 Convolution Operations

Graph convolutions can be divided into two groups: spectral
convolutions, which perform convolution by transforming
node representations into the spectral domain using the
graph Fourier transform or its extensions, and spatial convo-
lutions, which perform convolution by considering node
neighborhoods. Note that these two groups can overlap, for
example, when using a polynomial spectral kernel (please
refer to Section 4.1.2 for details).

4.1.1 Spectral Methods

Convolution is the most fundamental operation in CNNs.
However, the standard convolution operation used for
images or text cannot be directly applied to graphs because
graphs lack a grid structure [6]. Bruna et al. [40] first intro-
duced convolution for graph data from the spectral domain
using the graph Laplacian matrix L [75], which plays a simi-
lar role as the Fourier basis in signal processing [6]. The
graph convolution operation, ¢, is defined as follows:

u; +¢ up = Q((Q"wy) © (Q"wy)), (%)

where u;,u, € RY are two signals5 defined on nodes and Q
are the eigenvectors of L. Briefly, multiplying Q" transforms
the graph signals u;, uy into the spectral domain (i.e., the
graph Fourier transform), while multiplying Q performs
the inverse transform. The validity of this definition is based
on the convolution theorem, i.e., the Fourier transform of a
convolution operation is the element-wise product of their
Fourier transforms. Then, a signal u can be filtered by

u =Q0Q"u, (6)
where u’ is the output signal, @ = @(A) € RV is a diago-
nal matrix of learnable filters and A are the eigenvalues of
L. A convolutional layer is defined by applying different fil-
ters to different input-output signal pairs as follows:

fi
u(tt = p(Z Q®fngTu§) J=1. fi, @
i1

where [is the layer, u}; € R" is the jth hidden representation
(i.e., the signal) for the nodes in the ith layer, and @} ; are
learnable filters. The idea behind Eq. (7) is similar to a

5. We give an example of graph signals in Appendix D, which can
be found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TKDE.2020.2981333.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 16,2022 at 04:37:25 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TKDE.2020.2981333
http://doi.ieeecomputersociety.org/10.1109/TKDE.2020.2981333

254 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 1, JANUARY 2022

conventional convolution: it passes the input signals
through a set of learnable filters to aggregate the informa-
tion, followed by some nonlinear transformation. By using
the node features F' as the input layer and stacking multi-
ple convolutional layers, the overall architecture is similar
to that of a CNN. Theoretical analysis has shown that such a
definition of the graph convolution operation can mimic
certain geometric properties of CNNs and we refer readers
to [7] for a comprehensive survey.

However, directly using Eq. (7) requires learning O(N)
parameters, which may not be feasible in practice. Besides,
the filters in the spectral domain may not be localized in the
spatial domain, i.e., each node may be affected by all the
other nodes rather than only the nodes in a small region. To
alleviate these problems, Bruna et al. [40] suggested using
the following smoothing filters:

diag(@)i_’j) =K oy, ®)

where K is a fixed interpolation kernel and «;;; are learn-
able interpolation coefficients. The authors also generalized
this idea to the setting where the graph is not given but con-
structed from raw features using either a supervised or an
unsupervised method [41].

However, two fundamental problems remain unsolved.
First, because the full eigenvectors of the Laplacian matrix
are needed during each calculation, the time complexity is at
least O(N?) for each forward and backward pass, not to men-
tion the O(N?) complexity required to calculate the eigende-
composition, meaning that this approach is not scalable to
large-scale graphs. Second, because the filters depend on the
eigenbasis Q of the graph, the parameters cannot be shared
across multiple graphs with different sizes and structures.

Next, we review two lines of works trying to solve these
limitations and then unify them using some common
frameworks.

4.1.2 The Efficiency Aspect

To solve the efficiency problem, ChebNet [42] was proposed
to use a polynomial filter as follows:

K
O(A) => 6A", (9)

=0
where 6y, ...,0k are the learnable parameters and K is the

polynomial order. Then, instead of performing the eigende-
composition, the authors rewrote Eq. (9) using the Cheby-
shev expansion [76]:

K
k=0

where A = 2A /Amaz — I are the rescaled eigenvalues, A4, is
the maximum eigenvalue, I € RV*V is the identity matrix,
and 7 (z) is the Chebyshev polynomial of order k. The
rescaling is necessary because of the orthonormal basis of
Chebyshev polynomials. Using the fact that a polynomial of
the Laplacian matrix acts as a polynomial of its eigenvalues,

e, L*¥ = QA*Q’, the filter operation in Eq. (6) can be
rewritten as follows:

Hidden layer Hidden layer

Input Output

. RelU [S ReLU

Fig. 3. An illustrative example of the spatial convolution operation pro-
posed by Kipf and Welling [43] (reprinted with permission). Nodes are
affected only by their immediate neighbors in each convolutional layer.

K
v =QO(A)Q"u=> 6,Q7+(A)Q"u
k=0

K
~ K _
= Z Qka(L)u = Zk’:o Gku;”
k=0

where u, =7 k(i)u and L = 2L/Apas — L. Using the recur-
rence relation of the Chebyshev polynomial 7(z) =
20T 1(x) — Tjo(x) and To(z) = 1,7(x) = x, w; can also
be calculated recursively:

(11)

u; = 2]:171/@,1 — U9, (12)
with g = u and u; = Lu. Now, because only the matrix
multiplication of a sparse matrix L and some vectors need
to be calculated, the time complexity becomes O(KM)
when using sparse matrix multiplication, where M is the
number of edges and K is the polynomial order, i.e., the
time complexity is linear with respect to the number of
edges. It is also easy to see that such a polynomial filter is
strictly K-localized: after one convolution, the representa-
tion of node v; will be affected only by its K-step neighbor-
hoods Nk (4). Interestingly, this idea is used independently
in network embedding to preserve the high-order proxim-
ity [77], of which we omit the details for brevity.

Kipf and Welling [43] further simplified the filtering by
using only the first-order neighbors:

h(i+1:p Z ;

jen /D, 1)D(j, §)

ne' |, (13)

where h! ¢ R/ is the hidden representation of node v; in the
Ith layer®, D =D +1, and N (i) = V(i) U {i}. This can be
written equivalently in an matrix form as follows:

H* — p(D*%AD*%Hl(al) 14)
where A = A +1, ie., adding a self-connection. The authors
showed that Eq. (14) is a special case of Eq. (9) by setting
K =1 with a few minor changes. Then, the authors argued
that stacking an adequate number of layers as illustrated in

Fig. 3 has a modeling capacity similar to ChebNet but leads
to better results.

6. We use a different letter because h' € R/ is the hidden representa-
tion of one node, while u' € RY represents a dimension for all nodes.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 16,2022 at 04:37:25 UTC from IEEE Xplore. Restrictions apply.

ZHANG ETAL.: DEEP LEARNING ON GRAPHS: A SURVEY

An important insight of ChebNet and its extension is that
they connect the spectral graph convolution with the spatial
architecture. Specifically, they show that when the spectral
convolution function is polynomial or first-order, the spec-
tral graph convolution is equivalent to a spatial convolution.
In addition, the convolution in Eq. (13) is highly similar to
the state definition in a GNN in Eq. (1), except that the con-
volution definition replaces the recursive definition. From
this aspect, a GNN can be regarded as a GCN with a large
number of identical layers to reach stable states [7], i.e., a
GNN uses a fixed function with fixed parameters to itera-
tively update the node hidden states until reaching an equi-
librium, while a GCN has a preset number of layers and
each layer contains different parameters.

Some spectral methods have also been proposed to solve
the efficiency problem. For example, instead of using the
Chebyshev expansion as in Eq. (10), CayleyNet [44] adopted
Cayley polynomials to define graph convolutions:

K
O(A) =6y + QRe{Z 61(0n A — i) (6, A + iI)k}, (15)

k=1

where i = v/—1 denotes the imaginary unit and 6, is another
spectral zoom parameter. In addition to showing that Cay-
leyNet is as efficient as ChebNet, the authors demonstrated
that the Cayley polynomials can detect “narrow frequency
bands of importance” to achieve better results. Graph wave-
let neural network (GWNN) [45] was further proposed to
replace the Fourier transform in spectral filters by the graph
wavelet transform by rewriting Eq. (5) as follows:

w gz = Y((¥w) © (v w)), (16)
where 1 denotes the graph wavelet bases. By using fast
approximating algorithms to calculate ¥ and ¢!, GWNN'’s
computational complexity is also O(KM), i.e., linear with
respect to the number of edges.

4.1.3 The Aspect of Multiple Graphs

A parallel series of works has focuses on generalizing graph
convolutions to multiple graphs of arbitrary sizes. Neural
FPs [46] proposed a spatial method that also used the first-
order neighbors:

an

I+1 ey
h;* :a(z h]@).

JEN (i)

Because the parameters @ can be shared across different
graphs and are independent of the graph size, Neural FPs
can handle multiple graphs of arbitrary sizes. Note that
Eq. (17) is very similar to Eq. (13). However, instead of con-
sidering the influence of node degree by adding a normali-
zation term, Neural FPs proposed learning different
parameters ® for nodes with different degrees. This strat-
egy performed well for small graphs such as molecular
graphs (i.e., atoms as nodes and bonds as edges), but may
not be scalable to larger graphs.

PATCHY-SAN [47] adopted a different idea. It assigned a
unique node order using a graph labeling procedure such as
the Weisfeiler-Lehman kernel [78] and then arranged node

255

neighbors in a line using this pre-defined order. In addition,
PATCHY-SAN defined a “receptive field” for each node v;
by selecting a fixed number of nodes from its k-step neighbor-
hoods AV, (¢). Then a standard 1-D CNN with proper normali-
zation was adopted. Using this approach, nodes in different
graphs all have a “receptive field” with a fixed size and order;
thus, PATCHY-SAN can learn from multiple graphs like nor-
mal CNNs learn from multiple images. The drawbacks are
that the convolution depends heavily on the graph labeling
procedure which is a preprocessing step that is not learned.
LGCN [48] further proposed to simplify the sorting process
by using a lexicographical order (i.e., sorting neighbors based
on their hidden representation in the final layer H"). Instead
of using a single order, the authors sorted different channels
of H” separately. SortPooling [49] took a similar approach,
but rather than sorting the neighbors of each node, the
authors proposed to sort all the nodes (i.e., using a single
order for all the neighborhoods). Despite the differences
among these methods, enforcing a 1-D node order may not
be a natural choice for graphs.

DCNN [50] adopted another approach by replacing the
eigenbasis of the graph convolution with a diffusion-basis,
i.e., the neighborhoods of nodes were determined by the dif-
fusion transition probability between nodes. Specifically,
the convolution was defined as follows:

H''! = p(PFH'O), (18)
where PX = (P)" is the transition probability of a length-K
diffusion process (i.e., random walks), K is a preset diffu-
sion length, and @' are learnable parameters. Because only
PX depends on the graph structure, the parameters ®' can
be shared across graphs of arbitrary sizes. However, calcu-
lating PX has a time complexity of O(N*K); thus, this
method is not scalable to large graphs.

DGCN [51] was further proposed to jointly adopt the dif-
fusion and the adjacency bases using a dual graph convolu-
tional network. Specifically, DGCN used two convolutions:
one was Eq. (14), and the other replaced the adjacency
matrix with the positive pointwise mutual information
(PPMI) matrix [79] of the transition probability as follows:

_1 _1
ZH = ,0<D »XpD PQZZ@)‘), (19)
where Xp is the PPMI matrix calculated as:
Xp(i,§) = max| lo L= — 1,0, 20)
P (: (Zi P()) 55, Plir))

and Dp(i,i) = >, Xp(4,) is the diagonal degree matrix of
Xp. Then, these two convolutions were ensembled by mini-
mizing the mean square differences between H and Z.
DGCN adopted a random walk sampling technique to
accelerate the transition probability calculation. The experi-
ments demonstrated that such dual convolutions were
effective even for single-graph problems.

4.1.4 Frameworks

Based on the above two lines of works, MPNNs [52]
were proposed as a unified framework for the graph

Authorized licensed use limited to: Tsinghua University. Downloaded on February 16,2022 at 04:37:25 UTC from IEEE Xplore. Restrictions apply.

256 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 1, JANUARY 2022

convolution operation in the spatial domain using mes-
sage-passing functions:
1 4l gE
m* = 3" F(n], 0}, FE)
JEN ()
hé+1 _ gl (hi,mé“),

21

where F'(-) and G'(-) are the message functions and vertex
update functions to be learned, respectively, and m' denotes
the “messages” passed between nodes. Conceptually,
MPNNSs are a framework in which each node sends messages
based on its states and updates its states based on messages
received from the immediate neighbors. The authors showed
that the above framework had included many existing meth-
ods such as GGS-NNs [24], Bruna et al. [40], Henaff et al. [41],
Neural FPs [46], Kipf and Welling [43] and Kearnes et al. [55]
as special cases. In addition, the authors proposed adding a
“master” node that was connected to all the nodes to acceler-
ate the message-passing across long distances, and they split
the hidden representations into different “towers” to improve
the generalization ability. The authors showed that a specific
variant of MPNNs could achieve state-of-the-art performance
in predicting molecular properties.

Concurrently, GraphSAGE [53] took a similar idea as
Eq. (21) using multiple aggregating functions as follows:

m{" = AGGREGATE'({h},Vj € N (i)})
bt = p(O'[h}, m{"']),

K3

(22)

where [,-] is the concatenation operation and
AGGREGATE(:) represents the aggregating function. The
authors suggested three aggregating functions: the element-
wise mean, an LSTM, and max-pooling as follows:

AGGREGATE' = max{p(®pcth + byea), ¥j € N (i)},
(23)

where @, and b, are the parameters to be learned and
max{-} is the element-wise maximum. For the LSTM aggre-
gating function, because an neighbors order is needed, the
authors adopted a simple random order.

Mixture model network (MoNet) [54] also tried to unify
the existing GCN models as well as CNNs for manifolds
into a common framework using “template matching”:

hizl = Z fi(u(l,j))h]}, k=]-7 R f1+1:
JEN (i)

(24)

where u(i, j) are the pseudo-coordinates of the node pair
(vi,v;), Fi(u) is a parametric function to be learned, and h!,
is the kth dimension of h. In other words, " (u) served as a
weighting kernel for combining neighborhoods. Then,
MoNet adopted the following Gaussian kernel:

Fiw) = exp(-~ u — (2w -).

where ul and 3 are the mean vectors and diagonal cova-
riance matrices to be learned, respectively. The pseudo-
coordinates were degrees as in Kipf and Welling [43], i.e.,

(25)

u(i, j) = (—, —). (26)

Graph networks (GNs) [9] proposed a more general
framework for both GCNs and GNNs that learned three
sets of representations: h!, el;, and z' as the representation
for nodes, edges, and the entire graph, respectively. These
representations were learned using three aggregation and

three updating functions:

m! = G5 ({el,, V) € N(0)}), m), = 67O ({hl, v, € V})
mly = 6" ¢ ({el,. ¥(v,v)) € E}), b = FV(ml, b,)

57
1 _ Bl wlowl oy L Gyl]
e; =F"(e;h;hi2), 27 =77 (my,my, z),

(27)

where FV(-), FE(-), and FY(-) are the corresponding updat-
ing functions for nodes, edges, and the entire graph, respec-
tively, and G(-) represents message-passing functions whose
superscripts denote message-passing directions. Note that
the message-passing functions all take a set as the input, thus
their arguments are variable in length and these functions
should be invariant to input permutations; some examples
include the element-wise summation, mean, and maximum.
Compared with MPNNs, GNs introduced the edge represen-
tations and the representation of the entire graph, thus mak-
ing the framework more general.

In summary, the convolution operations have evolved
from the spectral domain to the spatial domain and from
multistep neighbors to the immediate neighbors. Currently,
gathering information from the immediate neighbors (as in
Eq. (14)) and following the framework of Egs. (21), (22), and
(27) are the most common choices for graph convolution
operations.

4.2 Readout Operations
Using graph convolution operations, useful node features
can be learned to solve many node-focused tasks. However,
to tackle graph-focused tasks, node information needs to be
aggregated to form a graph-level representation. In the liter-
ature, such procedures are usually called the readout opera-
tions’. Based on a regular and local neighborhood, standard
CNNs conduct multiple stride convolutions or poolings to
gradually reduce the resolution. Since graphs lack a grid
structure, these existing methods cannot be used directly.
Order Invariance. A critical requirement for the graph
readout operations is that the operation should be invariant
to the node order, i.e., if we change the indices of nodes and
edges using a bijective function between two node sets, the
representation of the entire graph should not change. For
example, whether a drug can treat certain diseases depends
on its inherent structure; thus, we should get identical
results if we represent the drug using different node indices.
Note that because this problem is related to the graph iso-
morphism problem, of which the best-known algorithm is
quasipolynomial [80], we only can find a function that is
order-invariant but not vice versa in a polynomial time, i.e.,
even two structurally different graphs may have the same
representation.

7.Readout operations are also related to graph coarsening, i.e.,
reducing a large graph to a smaller graph, because a graph-level repre-
sentation can be obtained by coarsening the graph to a single node.
Some papers use these two terms interchangeably.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 16,2022 at 04:37:25 UTC from IEEE Xplore. Restrictions apply.

ZHANG ETAL.: DEEP LEARNING ON GRAPHS: A SURVEY

Pooled network
at level 3

Pooled network
at level 2

Pooled network
at level 1

Original
network

=
=
E ----------

Fig. 4. An example of performing a hierarchical clustering algorithm.
Reprinted from [56] with permission.

4.2.1 Statistics

The most basic order-invariant operations involve simple
statistics such as summation, averaging or max-pooling [46],
[50], i.e.,

N 1 N
he = Zlhf or hg :N;hf orhg = max{hf,Vi},

(28)

where hg; is the representation of the graph G and h’ is the
representation of node v; in the final layer L. However, such
first-moment statistics may not be sufficiently representa-
tive to distinguish different graphs.

Kearnes et al. [55] suggested considering the distribution
of node representations by using fuzzy histograms [81]. The
basic idea behind fuzzy histograms is to construct several
“histogram bins” and then calculate the memberships of h”
to these bins, i.e., by regarding node representations as sam-
ples and matching them to some pre-defined templates, and
finally return the concatenation of the final histograms. In
this way, nodes with the same sum/average/maximum but
with different distributions can be distinguished.

Another commonly used approach for aggregating node
representation is to add a fully connected (FC) layer as the
final layer [40], i.e.,

he = p([H"]Orc), (29)
where [H'] € RV is the concatenation of the final node
representation H”, @y € R/t*Joutput are parameters, and
foutput 1s the dimensionality of the output. Eq. (29) can be
regarded as a weighted sum of node-level features. One
advantage is that the model can learn different weights for
different nodes; however, this ability comes at the cost of
being unable to guarantee order invariance.

4.2.2 Hierarchical Clustering

Rather than a dichotomy between node and graph level
structures, graphs are known to exhibit rich hierarchical
structures [82], which can be explored by hierarchical clus-
tering methods as shown in Fig. 4. For example, a density-
based agglomerative clustering [83] was used in Bruna
et al. [40] and multi-resolution spectral clustering [84] was
used in Henaff et al. [41]. ChebNet [42] and MoNet [54]
adopted another greedy hierarchical clustering algorithm,
Graclus [85], to merge two nodes at a time, along with a fast
pooling method to rearrange the nodes into a balanced
binary tree. ECC [63] adopted another hierarchical clustering
method by performing eigendecomposition [86]. However,

257

these hierarchical clustering methods are all independent
of the graph convolutions (i.e., they can be performed as a
preprocessing step and are not trained in an end-to-end
fashion).

To solve that problem, DiffPool [56] proposed a differen-
tiable hierarchical clustering algorithm jointly trained with
the graph convolutions. Specifically, the authors proposed
learning a soft cluster assignment matrix in each layer using
the hidden representations as follows:

s'=F(A H), (30)
where S' € RV*Ni1 s the cluster assignment matrix, N, is
the number of clusters in the layer [and F(-) is a function to
be learned. Then, the node representations and the new
adjacency matrix for this “coarsened” graph can be obtained
by taking the average according to S' as follows:

Hl+1 — (SZ)TI:I]+17AI+1 — (SZ)TAISZ7 (31)
where H'*! is obtained by applying a graph convolution
layer to H', i.e., coarsening the graph from N, nodes to N
nodes in each layer after the convolution operation. The ini-
tial number of nodes is Ny = N and the last layer is N;, =1,
i.e., a single node that represents the entire graph. Because
the cluster assignment operation is soft, the connections
between clusters are not sparse; thus the time complexity of
the method is O(N?) in principle.

4.2.3 Imposing Orders and Others

As mentioned in Section 4.1.3, PATCHY-SAN [47] and Sort-
Pooling [49] took the idea of imposing a node order and
then resorted to standard 1-D pooling as in CNNs. Whether
these methods can preserve order invariance depends on
how the order is imposed, which is another research field
that we refer readers to [87] for a survey. However, whether
imposing a node order is a natural choice for graphs and if
so, what the best node orders are constitute still on-going
research topics.

In addition to the aforementioned methods, there are
some heuristics. In GNNs [23], the authors suggested add-
ing a special node connected to all nodes to represent the
entire graph. Similarly, GNs [9] proposed to directly learn
the representation of the entire graph by receiving messages
from all nodes and edges.

MPNNSs adopted set2set [88], a modification of the seq2-
seq model. Specifically, set2set uses a “Read-Process-and-
Write” model that receives all inputs simultaneously, com-
putes internal memories using an attention mechanism and
an LSTM, and then writes the outputs. Unlike seq2seq which
is order-sensitive, set2set is invariant to the input order.

4.2.4 Summary

In short, statistics such as averaging or summation are the
most simple readout operations, while hierarchical cluster-
ing algorithms jointly trained with graph convolutions are
more advanced but are also more sophisticated. Other
methods such as adding a pseudo node or imposing a node
order have also been investigated.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 16,2022 at 04:37:25 UTC from IEEE Xplore. Restrictions apply.

258 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 1, JANUARY 2022

Fig. 5. An illustration of the multi-head attention mechanism proposed in
GAT [57] (reprinted with permission). Each color denotes an indepen-
dent attention vector.

4.3 Improvements and Discussions

Many techniques have been introduced to further improve
GCNs. Note that some of these methods are general and could
be applied to other deep learning models on graphs as well.

4.3.1 Attention Mechanism

In the aforementioned GCNs, the node neighborhoods are
aggregated with equal or pre-defined weights. However,
the influences of neighbors can vary greatly; thus, they
should be learned during training rather than being prede-
termined. Inspired by the attention mechanism [89], graph
attention network (GAT) [57] introduces the attention mech-
anism into GCNs by modifying the convolution operation
in Eq. (13) as follows:

W =pl D elhie'), (32)
JEN(3)
where aﬁ ; is node v;’s attention to node v; in the /th layer:
exp (LcakyRoLU (.7-" (hi@l, hé@l))) 3

M > v ©P (LeakyReLU (F (hi@', hj@')))

where F(-,-) is another function to be learned such as a
multi-layer perceptron (MLP). To improve model capacity
and stability, the authors also suggested using multiple inde-
pendent attentions and concatenating the results, i.e., the
multi-head attention mechanism [89] as illustrated in Fig. 5.
GaAN [58] further proposed learning different weights for
different heads and applied such a method to the traffic fore-
casting problem.

HAN [59] proposed a two-level attention mechanism,
i.e., a node-level and a semantic-level attention mechanism,
for heterogeneous graphs. Specifically, the node-level atten-
tion mechanism was similar to a GAT, but also considerd
node types; therefore, it could assign different weights to
aggregating meta-path-based neighbors. The semantic-level
attention then learned the importance of different meta-
paths and outputed the final results.

4.3.2 Residual and Jumping Connections

Many researches have observed that the most suitable
depth for the existing GCNss is often very limited, e.g., 2 or 3
layers. This problem is potentially due to the practical diffi-
culties involved in training deep GCNs or the over-smooth-
ing problem, i.e., all nodes in deeper layers have the same
representation [62], [70]. To remedy this problem, residual

(final)
R

f

Layer aggregation
Concat/Max-pooling/LSTM-attn

Input feature of node v

Fig. 6. Jumping knowledge networks proposed in [62] in which the last
layer is connected to all the other layers to selectively exploit different
information from different layers. GC denotes graph convolutions.
Reprinted with permission.

connections similar to ResNet [90] can be added to GCNs.
For example, Kipf and Welling [43] added residual connec-
tions into Eq. (14) as follows:

H*! — p(D*%AD*%HI(aZ) +H. 34)
They showed experimentally that adding such residual con-
nections could allow the depth of the network to increase,
which is similar to the results of ResNet.

Column network (CLN) [60] adopted a similar idea by
using the following residual connections with learnable
weights:

hl = oh* 4+ (1-d)) o R, (35)
where h!*! is calculated similar to Eq. (14) and ¢! is a set of
weights calculated as follows:

ol =p|b,+0.h +0, > 1|,
JEN (i)

(36)

where b, @, @Z are parameters. Note that Eq. (35) is very
similar to the GRU as in GGS-NNs [24]. The differences are
that in a CLN, the superscripts denote the number of layers,
and different layers contain different parameters, while in
GGS-NNs, the superscript denotes the pseudo time and a
single set of parameters is used across time steps.

Inspired by personalized PageRank, PPNP [61] defined
graph convolutions with teleportation to the initial layer:

H'"' = (1 — a)D 2AD H' + oH', (37
where Hy = F(F") and « is a hyper-parameter. Note that
all the parameters are in Fy(-) rather than in the graph
convolutions.

Jumping knowledge networks (JK-Nets) [62] proposed
another architecture to connect the last layer of the network
with all the lower hidden layers, i.e., by “jumping” all the
representations to the final output, as illustrated in Fig. 6. In

Authorized licensed use limited to: Tsinghua University. Downloaded on February 16,2022 at 04:37:25 UTC from IEEE Xplore. Restrictions apply.

ZHANG ETAL.: DEEP LEARNING ON GRAPHS: A SURVEY

this way, the model can learn to selectively exploit informa-
tion from different layers. Formally, JK-Nets was formu-
lated as follows:

h™! = AGGREGATE(h!, h!

% h!,...,h"), (38)
where hf™ is the final representation for node v;, AGGRE-
GATE (-) is the aggregating function, and L is the number
of hidden layers. JK-Nets used three aggregating functions
similar to GraphSAGE [53]: concatenation, max-pooling,
and the LSTM attention. The experimental results showed
that adding jump connections could improve the perfor-

mance of multiple GCNs.

4.3.3 Edge Features

The aforementioned GCNs mostly focus on utilizing node
features and graph structures. In this subsection, we briefly
discuss how to use another important source of information:
the edge features.

For simple edge features with discrete values such as the
edge type, a straightforward method is to train different
parameters for different edge types and aggregate the results.
For example, Neural FPs [46] trained different parameters for
nodes with different degrees, which corresponds to the
implicit edge feature of bond types in a molecular graph, and
then summed over the results. CLN [60] trained different
parameters for different edge types in a heterogeneous graph
and averaged the results. Edge-conditioned convolution
(ECC) [63] also trained different parameters based on edge
types and applied them to graph classification. Relational
GCNs (R-GCNs) [64] adopted a similar idea for knowledge
graphs by training different weights for different relation
types. However, these methods are suitable only for a limited
number of discrete edge features.

DCNN [50] proposed another method to convert each
edge into a node connected to the head and tail node of that
edge. After this conversion, edge features can be treated as
node features.

LGCN [65] constructed a line graph B € R*"*2M tg incor-
porate edge features as follows:

s 1 ifj=imdj i
=i’ =i =\ o otherwise.

In other words, nodes in the line graph are directed edges in
the original graph, and two nodes in the line graph are con-
nected if information can flow through their corresponding
edges in the original graph. Then, LGCN adopted two
GCNs: one on the original graph and one on the line graph.

Kearnes et al. [55] proposed an architecture using a
“weave module”. Specifically, they learned representations
for both nodes and edges and exchanged information
between them in each weave module using four different
functions: node-to-node (NN), node-to-edge (NE), edge-
to-edge (EE) and edge-to-node (EN):

(39)

h = Fyy(h!,h},... b)) h! = Fry({ellj € N(i)})
]]l/

U 0 41 l " [N
e, = Frr(ej e,e;),e; =Fyp(h;,hy)

(40)

IN

W = Fyy(h!) el = Fpp(e! eij);

i i /iy i

259

Layer 2
@
Layer 1 ¥ [
[= o]
4 P Input T =
ku2 o [B B]

(A) The node sampling method in GraphSAGE [53] (B) The node sampling method in

StochasticGCN [67]

batch
i s
H? (@ ® ® 00000] HA
GOHV D)

HY (@ 00O ®0®o0o0 | Hit)

GiH™H")}

w (O @)

(D) The node sampling method in Adapt [69]

HY (o0 @®@0Ce0co e |

(C) The node sampling method in FastGCN [68]

Fig. 7. Different node sampling methods, in which the blue nodes indi-
cate samples from one batch and the arrows indicate the sampling direc-
tions. The red nodes in (B) represent historical samples.

where e/ is the representation of edge (v;, v;) in the Ith layer
and F(-) are learnable functions whose subscripts represent
message-passing directions. By stacking multiple such mod-
ules, information can propagate by alternately passing
between node and edge representations. Note that in the
node-to-node and edge-to-edge functions, jump connections
similar to those in JK-Nets [62] are implicitly added. GNs [9]
also proposed learning an edge representation and updat-
ing both node and edge representations using message-
passing functions as shown in Eq. (27) in Section 4.1.4. In
this aspect, the “weave module” is a special case of GNs
that does not a representation of the entire graph.

4.3.4 Sampling Methods

One critical bottleneck when training GCNs for large-scale
graphs is efficiency. As shown in Section 4.1.4, many GCNs fol-
low a neighborhood aggregation scheme. However, because
many real graphs follow a power-law distribution [91] (i.e., a
few nodes have very large degrees), the number of neighbors
can expand extremely quickly. To deal with this problem, two
types of sampling methods have been proposed: neighborhood
samplings and layer-wise samplings, as illustrated in Fig. 7.

In neighborhood samplings, the sampling is performed
for each node during the calculations. GraphSAGE [53] uni-
formly sampled a fixed number of neighbors for each node
during training. PinSage [66] proposed sampling neighbors
using random walks on graphs along with several imple-
mentation improvements including coordination between
the CPU and GPU, a map-reduce inference pipeline, and so
on. PinSage was shown to be capable of handling a real bil-
lion-scale graph. StochasticGCN [67] further proposed
reducing the sampling variances by using the historical acti-
vations of the last batches as a control variate, allowing for
arbitrarily small sample sizes with a theoretical guarantee.

Instead of sampling neighbors of nodes, FastGCN [68]
adopted a different strategy: it ssampled nodes in each convo-
lutional layer (i.e., a layer-wise sampling) by interpreting the
nodes as i.i.d. samples and the graph convolutions as inte-
gral transforms under probability measures. FastGCN also
showed that sampling nodes via their normalized degrees

Authorized licensed use limited to: Tsinghua University. Downloaded on February 16,2022 at 04:37:25 UTC from IEEE Xplore. Restrictions apply.

260 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 1, JANUARY 2022

TABLE 5
A Comparison Among Different Graph Autoencoders (GAESs)

Method Type Objective Function T.C. Node Features Other Characteristics
SAE [96] AE L2-reconstruction O(M) No -

SDNE [97] AE L2-reconstruction + Laplacian eigenmaps O(M) No -

DNGR [98] AE L2-reconstruction O(N?*) No -

GC-MC [99] AE L2-reconstruction O(M) Yes GCN encoder

DRNE [100] AE Recursive reconstruction O(Ns) No LSTM aggregator
G2G [101] AE KL + ranking O(M) Yes Nodes as distributions
VGAE [102] VAE Pairwise reconstruction O(N?) Yes GCN encoder

DVNE [103] VAE Wasserstein + ranking O(M) No Nodes as distributions
ARGA/ARVGA [104] AE/VAE L2-reconstruction + GAN O(N?) Yes GCN encoder

NetRA [105] AE Recursive reconstruction + Laplacian eigenmaps + GAN O(M) No LSTM encoder

T.C. = Time Complexity.

could reduce variances and lead to better performance.
Adapt [69] further proposed sampling nodes in the lower
layers conditioned on their top layer; this approach was
more adaptive and applicable to explicitly reduce variances.

4.3.5 Inductive Setting

Another important aspect of GCNs is that whether they can be
applied to an inductive setting, i.e., training on a set of nodes
or graphs and testing on another unseen set of nodes or
graphs. In principle, this goal is achieved by learning a map-
ping function on the given features that are not dependent on
the graph basis and can be transferred across nodes or graphs.
The inductive setting was verified in GraphSAGE [53],
GAT [57], GaAN [58], and FastGCN [68]. However, the exist-
ing inductive GCNs are suitable only for graphs with explicit
features. How to conduct inductive learnings for graphs with-
out explicit features, usually called the out-of-sample prob-
lem [92], remains largely open in the literature.

4.3.6 Theoretical Analysis

To understand the effectiveness of GCNs, some theoretical
analyses have been proposed that can be divided into three
categories: node-focused tasks, graph-focused tasks, and
general analysis.

For node-focused tasks, Li et al. [70] first analyzed the
performance of GCNs by using a special form of Laplacian
smoothing, which makes the features of nodes in the same
cluster similar. The original Laplacian smoothing operation
is formulated as follows:

1
hi=(1-pyh+y) 7
JEN()

(41)

where h; and h! are the original and smoothed features of
node v;, respectively. We can see that Eq. (41) is very similar
to the graph convolution in Eq. (13). Based on this insight,
Li et al. also proposed a co-training and a self-training
method for GCN.

Recently, Wu et al. [71] analyzed GCNs from a signal
processing perspective. By regarding node features as graph
signals, they showed that Eq. (13) is basically a fixed low-
pass filter. Using this insight, they proposed an extremely
simplified graph convolution (SGC) architecture by remov-
ing all the nonlinearities and collapsing the learning param-
eters into one matrix:

H! = (ﬁf%Afr%) "B0. 42)

The authors showed that such a “non-deep-learning” GCN
variant achieved comparable performance to existing GCNs
in many tasks. Maehara [72] enhanced this result by show-
ing that the low-pass filtering operation did not equip
GCNs with a nonlinear manifold learning ability, and fur-
ther proposed GFNN model to remedy this problem by
adding a MLP after the graph convolution layers.

For graph-focused tasks, Kipf and Welling [43] and the
authors of SortPooling [49] both considered the relationship
between GCNs and graph kernels such as the Weisfeiler-
Lehman (WL) kernel [78], which is widely used in graph
isomorphism tests. They showed that GCNs are conceptu-
ally a generalization of the WL kernel because both methods
iteratively aggregate information from node neighbors.
Xu et al. [73] formalized this idea by proving that the WL
kernel provides an upper bound for GCNs in terms of dis-
tinguishing graph structures. Based on this analysis, they
proposed graph isomorphism network (GIN) and showed
that a readout operation using summation and a MLP can
achieve provably maximum discriminative power, i.e., the
highest training accuracy in graph classification tasks.

For general analysis, Scarselli et al. [93] showed that the
Vapnik-Chervonenkis dimension (VC-dim) of GCNs with
different activation functions has the same scale as the exist-
ing RNNs. Chen et al. [65] analyzed the optimization land-
scape of linear GCNs and showed that any local minimum
is relatively close to the global minimum under certain sim-
plifications. Verma and Zhang [94] analyzed the algorithmic
stability and generalization bound of GCNs. They showed
that single-layer GCNs satisfy the strong notion of uniform
stability if the largest absolute eigenvalue of the graph con-
volution filters is independent of the graph size.

5 GRAPH AUTOENCODERS

The autoencoder (AE) and its variations have been widely
applied in unsupervised learning tasks [95] and are suitable
for learning node representations for graphs. The implicit
assumption is that graphs have an inherent, potentially non-
linear low-rank structure. In this section, we first elaborate
graph autoencoders and then introduce graph variational
autoencoders and other improvements. The main character-
istics of GAEs are summarized in Table 5.

5.1 Autoencoders

The use of AEs for graphs originated from sparse autoencoder
(SAE) [96]. The basic idea is that, by regarding the adjacency

Authorized licensed use limited to: Tsinghua University. Downloaded on February 16,2022 at 04:37:25 UTC from IEEE Xplore. Restrictions apply.

ZHANG ETAL.: DEEP LEARNING ON GRAPHS: A SURVEY

matrix or its variations as the raw features of nodes, AEs can
be leveraged as a dimensionality reduction technique to learn
low-dimensional node representations. Specifically, SAE
adopted the following L2-reconstruction loss:

ZHP I,
P(i,:) = G(h;),h; = F(P(i,:)),

where P is the transition matrix, P is the reconstructed
matrix, h; € R? is the low-dimensional representation of
node v;, F(+) is the encoder, G(-) is the decoder, d < N is the
dimensionality, and © are parameters. Both the encoder
and decoder are an MLP with many hidden layers. In other
words, a SAE compresses the information of P(i,:) into a
low-dimensional vector h; and then reconstructs the origi-
nal feature from that vector. Another sparsity regularization
term was also added. After obtaining the low-dimensional
representation h;, k-means [106] was applied for the node
clustering task. The experiments prove that SAEs outper-
form non-deep learning baselines. However, SAE was based
on an incorrect theoretical analysis.® The mechanism under-
lying its effectiveness remained unexplained.

Structure deep network embedding (SDNE) [97] filled in
the puzzle by showing that the L2-reconstruction loss in
Eq. (43) actually corresponds to the second-order proximity
between nodes, i.e., two nodes share similar latten represen-
tations if they have similar neighborhoods, which is a well-
studied concept in network science known as collaborative
filtering or triangle closure [5]. Motivated by network
embedding methods showing that the first-order proximity
is also important [108], SDNE modified the objective func-
tion by adding another Laplacian eigenmaps term [75]:

min £y =
) (43)

(44)

ig=1

i.e., two nodes also share similar latent representations if
they are directly connected. The authors also modified the
L2-reconstruction loss by using the adjacency matrix and
assigning different weights to zero and non-zero elements:

N
£2= I(A(i,2) = G(hy)) © b, (45)

i=1
where h; = F(A(i,:)), by =1 if A(4,j) =0; otherwise

bjj =B > 1, and B is another hyper-parameter. The overall
architecture of SDNE is shown in Fig. 8.

Motivated by another line of studies, a contemporary
work DNGR [98] replaced the transition matrix P in Eq. (43)
with the positive pointwise mutual information (PPMI) [79]
matrix defined in Eq. (20). In this way, the raw features can
be associated with some random walk probability of the
graph [109]. However, constructing the input matrix has a
time complexity of O(N?), which is not scalable to large-
scale graphs.

8.SAE [96] motivated the problem by analyzing the connection
between spectral clustering and singular value decomposition, which is
mathematically incorrect as pointed out in [107].

261

Local structure preserved cost

Local structure preserved cost

parameter sharing — 3
(e0e-00@) |
Gldbal structure preserved cost

Laplacian
Eigenmaps

Vertex j

Vertex i

Fig. 8. The framework of SDNE [97]. Both the first and second-order
proximities of nodes are preserved using deep autoencoders.

GC-MC [99] took a different approach by using the GCN
proposed by Kipf and Welling [43] as the encoder:

H = GCN(F",A), (46)
and using a simple bilinear function as the decoder:
A(i,j) = H(i,)0 H(j,), (47)

where @, are the decoder parameters. Using this approach,
node features were naturally incorporated. For graphs with-
out node features, a one-hot encoding of node IDs was uti-
lized. The authors demonstrated the effectiveness of GC-
MC on the recommendation problem on bipartite graphs.
Instead of reconstructing the adjacency matrix or its varia-
tions, DRNE [100] proposed another modification that
directly reconstructed the low-dimensional node vectors by
aggregating neighborhood information using an LSTM. Spe-
cifically, DRNE adopted the following objective function:

£=>|[h; —LSTM({hy|s € N(i)})]].

i=1

(48)

Because an LSTM requires its inputs to be a sequence, the
authors suggested ordering the node neighborhoods based
on their degrees. They also adopted a neighborhood sam-
pling technique for nodes with large degrees to prevent an
overlong memory. The authors proved that such a method
can preserve regular equivalence as well as many centrality
measures of nodes, such as PageRank [110].

Unlike the above works that map nodes into a low-dimen-
sional vector, Graph2Gauss (G2G) [101] proposed encoding
each node as a Gaussian distribution h; = A(M(z,:),
diag(2%(i,:))) to capture the uncertainties of nodes. Specifi-
cally, the authors used a deep mapping from the node attrib-
utes to the means and variances of the Gaussian distribution
as the encoder:

MG, 2) = Faa(E (i,9)), (i) = Fs (V(i,3)), (19)
where Fu(-) and Fx(-) are the parametric functions that
need to be learned. Then, instead of using an explicit
decoder function, they used pairwise constraints to learn
the model:

KL (hy||h;) < KL(hy|[h;)Vi, V5,V s.t. d(i,j) < d(i,J),
(50)

Authorized licensed use limited to: Tsinghua University. Downloaded on February 16,2022 at 04:37:25 UTC from IEEE Xplore. Restrictions apply.

262 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 1, JANUARY 2022

where d(7, j) is the shortest distance from node v; to v; and
KL(g()|lp(-)) is the Kullback-Leibler (KL) divergence
between ¢(-) and p(-) [111]. In other words, the constraints
ensure that the KL-divergence between node representa-
tions has the same relative order as the graph distance.
However, because Eq. (50) is hard to optimize, an energy-
based loss [112] was adopted as a relaxation:

L= Y (E?J + exp*Ez‘.f’),

(i,4,5)€D

(51)

where D = {(i, 7, j)|d(i,j) < d(i,j)} and Ej; = KL(h;||h;).
The authors further proposed an unbiased sampling strat-
egy to accelerate the training process.

5.2 Variational Autoencoders

Different from the aforementioned autoencoders, varia-
tional autoencoders (VAEs) are another type of deep learn-
ing method that combines dimensionality reduction with
generative models. Its potential benefits include tolerating
noise and learning smooth representations [113]. VAEs
were first introduced to graph data in VGAE [102], where
the decoder was a simple linear product:

Al =TT o (mn?).

in which the node representation was assumed to follow
a Gaussian distribution q(h;|M,2) = N (h;|M(4,:), diag
(2(4,:))). For the encoder of the mean and variance matri-
ces, the authors also adopted the GCN proposed by Kipf
and Welling [43]:

(52)

M = GCNm(F",A),log% = GCNx (F¥, A). (53)

Then, the model parameters were learned by minimizing
the variational lower bound [113]:

L =E, v a)llogp(AH)] - KL(q(H[F", A)|[p(H)).
(54)

However, because this approach required reconstructing
the full graph, its time complexity is O(N?).

Motivated by SDNE and G2G, DVNE [103] proposed
another VAE for graph data that also represented each node
as a Gaussian distribution. Unlike the existing works that
had adopted KL-divergence as the measurement, DVNE
used the Wasserstein distance [114] to preserve the transi-
tivity of the nodes similarities. Similar to SDNE and G2G,
DVNE also preserved both the first and second-order prox-
imity in its objective function:

min Z (ELZ/ + eXPfE”‘/) +aly,
(i..4) €D

(55)

where Ej; = W (hy||h;) is the 2"¢ Wasserstein distance
between two Gaussian distributions h; and h; and
D=A{(i,4,7)g e N(i),f ¢ N(i)} is a set of triples corre-
sponding to the ranking loss of the first-order proximity.
The reconstruction loss was defined as follows:

Ly = infyzp) Eyp)Eqzp) [P © (P - G(Z))[f3, (56)

Parameter sharing

! u

(eeeee (eeeee
(0000

0 00 0000

\decoder ﬁdecoder {- ﬁdecoder %

Z; @) @ Z; z;
sample g, sample g, sample e,
[Ranking I

)

Node i Node j'

Loss w(9) o I,.] B) “i[.I#] Hy °i'[.I#]
- A 4 . A Z . AY .
;encoder T | (encoder] ;encoder i)

00000 00000 00000

Node j

Fig. 9. The framework of DVNE [103]. DVNE represents nodes as distri-
butions using a VAE and adopts the Wasserstein distance to preserve
the transitivity of the nodes similarities.

where P is the transition matrix and Z represents samples
drawn from H. The framework is shown in Fig. 9. Using
this approach, the objective function can be minimized as in
conventional VAEs using the reparameterization trick [113].

5.3 Improvements and Discussions
Several improvements have also been proposed for GAEs.

5.3.1 Adversarial Training

An adversarial training scheme’ was incorporated into
GAEs as an additional regularization term in ARGA [104].
The overall architecture is shown in Fig. 10. Specifically, the
encoder of GAEs was used as the generator while the dis-
criminator aimed to distinguish whether a latent representa-
tion came from the generator or from a prior distribution. In
this way, the autoencoder was forced to match the prior dis-
tribution as a regularization. The objective function was:

Hgnﬁg +alaan, (57

where L is the reconstruction loss in GAEs and Lgay is
mén max En-py, log D(h)] + E, _ggv a)[log (1 — D(2))],
(58)

where G(F",A) is a generator that uses the graph convolu-
tional encoder from Eq. (53), D(:) is a discriminator based
on the cross-entropy loss, and py is the prior distribution.
The study adopted a simple Gaussian prior, and the experi-
mental results demonstrated the effectiveness of the adver-
sarial training scheme.

Concurrently, NetRA [105] also proposed using a genera-
tive adversarial network (GAN) [115] to enhance the gener-
alization ability of graph autoencoders. Specifically, the
authors used the following objective function:

Hgnﬁg +o1Lrp+algan, (59)
where Ly is the Laplacian eigenmaps objective function
shown in Eq. (44). In addition, the authors adopted an
LSTM as the encoder to aggregate information from neigh-
borhoods similar to Eq. (48). Instead of sampling only

9. We will discuss more adversarial methods for graphs in Section 7.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 16,2022 at 04:37:25 UTC from IEEE Xplore. Restrictions apply.

ZHANG ETAL.: DEEP LEARNING ON GRAPHS: A SURVEY

qH|A.F)

A _--,

L]
(X]

F

ae e
e _sow

Encoder

H'~ p(H)
Real

263

1 | Real

Input | —

eee
v
ePew

v
eecee
A
eew
¥

@
@
@
=]
@
@

Discriminator

0 | Fake

Fig. 10. The framework of ARGA/ARVGA reprinted from [104] with permission. This model incorporates the adversarial training scheme into GAEs.

immediate neighbors and ordering the nodes using degrees
as in DRNE [100], the authors used random walks to gener-
ate the input sequences. In contrast to ARGA, NetRA con-
sidered the representations in GAEs as the ground-truth
and adopted random Gaussian noises followed by an MLP
as the generator.

5.3.2 Inductive Learning

Similar to GCNs, GAEs can be applied to the inductive
learning setting if node attributes are incorporated in the
encoder. This can be achieved by using a GCN as the
encoder, such as in GC-MC [99], VGAE [102], and
VGAE [104], or by directly learning a mapping function
from node features as in G2G [101]. Because the edge infor-
mation is utilized only when learning the parameters, the
model can also be applied to nodes unseen during training.
These works also show that although GCNs and GAEs are
based on different architectures, it is possible to use them
jointly, which we believe is a promising future direction.

5.3.3 Similarity Measures

In GAEs, many similarity measures have been adopted, for
example, L2-reconstruction loss, Laplacian eigenmaps, and
the ranking loss for graph AEs, and KL divergence and
Wasserstein distance for graph VAEs. Although these simi-
larity measures are based on different motivations, how to
choose an appropriate similarity measure for a given task
and model architecture remains unstudied. More research
is needed to understand the underlying differences between
these metrics.

6 GRAPH REINFORCEMENT LEARNING

One aspect of deep learning not yet discussed is reinforce-
ment learning (RL), which has been shown to be effective in
Al tasks such as playing games [122]. RL is known to be
good at learning from feedbacks, especially when dealing
with non-differentiable objectives and constraints. In this
section, we review Graph RL methods. Their main charac-
teristics are summarized in Table 6.

GCPN [116] utilized RL to generate goal-directed molec-
ular graphs while considering non-differential objectives
and constraints. Specifically, the graph generation is mod-
eled as a Markov decision process of adding nodes and
edges, and the generative model is regarded as an RL agent
operating in the graph generation environment. By treating
agent actions as link predictions, using domain-specific as
well as adversarial rewards, and using GCNs to learn the
node representations, GCPN can be trained in an end-
to-end manner using a policy gradient [123].

A concurrent work, MolGAN [117], adopted a similar idea
of using RL for generating molecular graphs. However, rather
than generating the graph through a sequence of actions, Mol-
GAN proposed directly generating the full graph; this
approach worked particularly well for small molecules.

GTPN [118] adopted RL to predict chemical reaction
products. Specifically, the agent acted to select node pairs in
the molecule graph and predicted their new bonding types,
and rewards were given both immediately and at the end
based on whether the predictions were correct. GTPN used
a GCN to learn the node representations and an RNN to
memorize the prediction sequence.

GAM [119] applied RL to graph classification by using
random walks. The authors modeled the generation of

TABLE 6

The Main Characteristics of Graph Reinforcement Learning
Method Task Actions Rewards Time Complexity
GCPN [116] Graph generation Link prediction GAN + domain knowledge ~ O(MN)
MOoIGAN [117] Graph generation Generate the entire graph GAN + domain knowledge ~ O(N?)
GTPN [118] Chemical reaction prediction Predict node pairs and new bonding types Prediction results O(N?)
GAM [119] Graph classification Predict graph labels and select the next node Classification results O(dyvgST)
DeepPath [120] Knowledge graph reasoning Predict the next node of the reasoning path ~ Reasoning results + diversity ~O(duy,sT + s°T)
MINERVA [121] Knowledge graph reasoning Predict the next node of the reasoning path ~ Reasoning results O(davgsT)

Authorized licensed use limited to: Tsinghua University. Downloaded on February 16,2022 at 04:37:25 UTC from IEEE Xplore. Restrictions apply.

264 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 1, JANUARY 2022

TABLE 7
The Main Characteristics of Graph Adversarial Methods

Category Method Adversarial Methods Time Complexity =~ Node Features
ARGA/ARVGA [104] Regularization for GAEs O(N?) Yes
NetRA [105] Regularization for GAEs O(M) No

Adversarial Training GCPN [116] Rewards for Graph RL O(ZWN) Yes
MOolGAN [117] Rewards for Graph RL O(N?) Yes
GraphGAN [124] Generation of negative samples (i.e., node pairs) O(MN) No
ANE [125] Regularization for network embedding O(N) No
GraphSGAN [126] Enhancing semi-supervised learning on graphs O(N?) Yes
NetGAN [127] Generation of graphs via random walks O(M) No
Nettack [128] Targeted attacks of graph structures and node attributes ~ O(Nd3) Yes

Adversarial Attack Dai et al. [129] Targeted attacks of graph structures oM No
Zugner and Gunnemann [130] ~ Non-targeted attacks of graph structures O(N?) No

random walks as a partially observable Markov decision
process (POMDP). The agent performed two actions: first, it
predicted the label of the graph; then, it selected the next
node in the random walk. The reward was determined sim-
ply by whether the agent correctly classified the graph, i.e.,

J(0) = Eps,0)
t

T
Tt (60)
=1
where 7, =1 represents a correct prediction; otherwise,
r = —1. T is the total time steps and S} is the environment.
DeepPath [120] and MINERVA [121] both adopted RL
for knowledge graph (KG) reasoning. Specifically, Deep-
Path targeted at pathfinding, i.e., find the most informative
path between two target nodes, while MINERVA tackled
question-answering tasks, i.e., find the correct answer node
given a question node and a relation. In both methods, the
RL agents need to predict the next node in the path at each
step and output a reasoning path in the KG. Agents receive
rewards if the paths reach the correct destinations. Deep-
Path also added a regularization term to encourage the path
diversity.

7 GRAPH ADVERSARIAL METHODS

Adversarial methods such as GANs [115] and adversarial
attacks have drawn increasing attention in the machine
learning community in recent years. In this section, we
review how to apply adversarial methods to graphs. The
main characteristics of graph adversarial methods are sum-
marized in Table 7.

7.1 Adversarial Training

The basic idea behind a GAN is to build two linked models:
a discriminator and a generator. The goal of the generator is
to “fool” the discriminator by generating fake data, while
the discriminator aims to distinguish whether a sample
comes from real data or is generated by the generator. Sub-
sequently, both models benefit from each other by joint
training using a minimax game. Adversarial training has
been shown to be effective in generative models and
enhancing the generalization ability of discriminative mod-
els. In Section 5.3.1 and Section 6, we reviewed how adver-
sarial training schemes are used in GAEs and Graph RL,
respectively. Here, we review several other adversarial
training methods on graphs in detail.

GraphGAN [124] proposed using a GAN to enhance
graph embedding methods [17] with the following objective
function:

N
mgin max Z (vapgnuph("“/, y[log D(v, ;)]
=1

+ EUNQ(‘M) [log (1 — D(U, U,))])

(61)

The discriminator D(-) and the generator G(-) are as follows:

exp(g,8.,)

e TV (62)
Zv’yévi exp(gv’ g%;)

D(v,v;) = o(d,d]), G(v|v;) =

where d, and g, are the low-dimensional embedding vec-
tors for node v in the discriminator and the generator,
respectively. Combining the above equations, the discrimi-
nator actually has two objectives: the node pairs in the origi-
nal graph should possess large similarities, while the node
pairs generated by the generator should possess small simi-
larities. This architecture is similar to network embedding
methods such as LINE [108], except that negative node pairs
are generated by the generator G(-) instead of by random
samplings. The authors showed that this method enhanced
the inference abilities of the node embedding vectors.

Adpversarial network embedding (ANE) [125] also adopted
an adversarial training scheme to improve network embed-
ding methods. Similar to ARGA [104], ANE used a GAN as
an additional regularization term to existing network embed-
ding methods such as DeepWalk [131] by imposing a prior
distribution as the real data and regarding the embedding
vectors as generated samples.

GraphSGAN [126] used a GAN to enhance semi-supervised
learning on graphs. Specifically, the authors observed that fake
nodes should be generated in the density gaps between sub-
graphs to weaken the propagation effect across different clus-
ters of the existing models. To achieve that goal, the authors
designed a novel optimization objective with elaborate loss
terms to ensure that the generator generated samples in the
density gaps at equilibrium.

NetGAN [127] adopted a GAN for graph generation
tasks. Specifically, the authors regarded graph generation as
a task to learn the distribution of biased random walks and
adopted a GAN framework to generate and discriminate
among random walks using an LSTM. The experiments
showed that using random walks could also learn global
network patterns.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 16,2022 at 04:37:25 UTC from IEEE Xplore. Restrictions apply.

ZHANG ETAL.: DEEP LEARNING ON GRAPHS: A SURVEY

7.2 Adversarial Attacks
Adversarial attacks are another class of adversarial methods
intended to deliberately “fool” the targeted methods by
adding small perturbations to data. Studying adversarial
attacks can deepen our understanding of the existing mod-
els and inspire more robust architectures. We review the
graph-based adversarial attacks below.

Nettack [128] first proposed attacking node classification
models such as GCNs by modifying graph structures and
node attributes. Denoting the targeted node as vy and its
true class as ¢, the targeted model as F(A, F) and its
loss function as L£(A,F"), the model adopted the following
objective function:

v,C

—logZ’

argmax MaxXte,,.10gZ 0rCtrme

(A" F")ep

s.t. Z" = Fo- (A, F"),0" = argmingLr(A’, F),

(63)

where A’ and F"' are the modified adjacency matrix and
node feature matrix, respectively, Z represents the classifi-
cation probabilities predicted by F(-), and P is the space
determined by the attack constraints. Simply speaking, the
optimization aims to find the best legitimate changes in
graph structures and node attributes to cause vy to be mis-
classified. The 6* indicates that the attack is causative, i.e.,
the attack occurs before training the targeted model. The
authors proposed several constraints for the attacks. The
most important constraint is that the attack should be
“unnoticeable”, i.e., it should make only small changes.
Specifically, the authors proposed to preserve data char-
acteristics such as node degree distributions and feature
co-occurrences. The authors also proposed two attacking
scenarios, direct attack (directly attacking vy) and influence
attack (only attacking other nodes), and several relaxations
to make the optimization tractable.

Concurrently, Dai et al. [129] studied adversarial attacks
for graphs with an objective function similar to Eq. (63); how-
ever, they focused on the case in which only graph structures
were changed. Instead of assuming that the attacker pos-
sessed all the information, the authors considered several
settings in which different amounts of information were
available. The most effective strategy, RL-S2V, adopted
structure2vec [132] to learn the node and graph representa-
tions and used reinforcement learning to solve the optimiza-
tion. The experimental results showed that the attacks were
effective for both node and graph classification tasks.

The aforementioned two attacks are targeted, i.e., they
are intended to cause misclassification of some targeted
node vy. Zugner and Gunnemann [130] were the first to
study non-targeted attacks, which were intended to reduce
the overall model performance. They treated the graph
structure as hyper-parameters to be optimized and adopted
meta-gradients in the optimization process, along with sev-
eral techniques to approximate the meta-gradients.

8 DISCUSSIONS AND CONCLUSION

Thus far, we have reviewed the different graph-based deep
learning architectures as well as their similarities and differ-
ences. Next, we briefly discuss their applications, implemen-
tations, and future directions before summarizing this paper.

265

8.1 Applications

In addition to standard graph inference tasks such as node or
graph classification'’, graph-based deep learning methods
have also been applied to a wide range of disciplines, includ-
ing modeling social influence [133], recommendation [28],
[66], [99], [134], chemistry and biology [46], [52], [55], [116],
[117], physics [135], [136], disease and drug prediction [137],
[138], [139], gene expression [140], natural language process-
ing (NLP) [141], [142], computer vision [143], [144], [145],
[146], [147], traffic forecasting [148], [149], program induc-
tion [150], solving graph-based NP problems [151], [152],
and multi-agent Al systems [153], [154], [155].

A thorough review of these methods is beyond the scope
of this paper due to the sheer diversity of these applications;
however, we list several key inspirations. First, it is impor-
tant to incorporate domain knowledge into the model when
constructing a graph or choosing architectures. For exam-
ple, building a graph based on the relative distance may be
suitable for traffic forecasting problems, but may not work
well for a weather prediction problem where the geographi-
cal location is also important. Second, a graph-based model
can usually be built on top of other architectures rather than
as a stand-alone model. For example, the computer vision
community usually adopts CNNs for detecting objects and
then uses graph-based deep learning as a reasoning mod-
ule [156]. For NLP problems, GCNs can be adopted as syn-
tactic constraints [141]. As a result, key key challenge is how
to integrate different models. These applications also show
that graph-based deep learning not only enables mining the
rich value underlying the existing graph data but also helps
to naturally model relational data as graphs, greatly widen-
ing the applicability of graph-based deep learning models.

8.2 Implementations

Recently, several open libraries have been made available
for developing deep learning models on graphs. These
libraries are listed in Table 8. We also collected a list of
source code (mostly from their original authors) for the
studies discussed in this paper. This repository is included
in Appendix A, available in the online supplemental mate-
rial. These open implementations make it easy to learn,
compare, and improve different methods. Some implemen-
tations also address the problem of distributed computing,
which we do not discuss in this paper.

8.3 Future Directions
There are several ongoing or future research directions
which are also worthy of discussion:

e New models for unstudied graph structures. Due to the
extremely diverse structures of graph data, the exist-
ing methods are not suitable for all of them. For
example, most methods focus on homogeneous
graphs, while heterogeneous graphs are seldom
studied, especially those containing different modal-
ities such as those in [157]. Signed networks, in
which negative edges represent conflicts between
nodes, also have unique structures, and they pose

10. A collection of methods for common tasks is listed in Appendix
B, available in the online supplemental material.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 16,2022 at 04:37:25 UTC from IEEE Xplore. Restrictions apply.

266 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 1, JANUARY 2022

TABLE 8
Libraries of Deep Learning on Graphs
Name URL Language/ Key Characteristics
Framework
PyTorch https://github.com/rustyls/ PvTorch Improved efficiency, unified operations, comprehensive
Geometric [164] pytorch_geometric yrore existing methods
E%izﬁﬁ%g] https://github.com/dmlc/dgl PyTorch Improved efficiency, unified operations, scalability
AliGraph [166] https:/ /github.com/alibaba/aligraph ~ Unknown Distributed environment, scalability, in-house algorithms
Euler https://github.com/alibaba/euler C++/TensorFlow Distributed environment, scalability

additional challenges to the existing methods [158].
Hypergraphs, which represent complex relations
between more than two objects [159], are also under-
studied. Thus, an important next step is to design
specific deep learning models to handle these types
of graphs.

o Compositionality of existing models. As shown multiple
times in this paper, many of the existing architec-
tures can be integrated: for example, using a GCN as
a layer in GAEs or Graph RL. In addition to design-
ing new building blocks, how to systematically com-
posite these architectures is an interesting future
direction. In this process, how to incorporate inter-
disciplinary knowledge in a principled way rather
than on a case-by-case basis is also an open problem.
One recent work, graph networks [9], takes the first
step and focuses on using a general framework of
GNNs and GCNis for relational reasoning problems.
AutoML may also be helpful by reducing the human
burden of assembling different components and
choosing hyper-parameters [160].

e Dynamic graphs. Most of the existing methods focus
on static graphs. However, many real graphs are
dynamic in nature: their nodes, edges, and features
can change over time. For example, in social net-
works, people may establish new social relations,
remove old relations, and their features, such as hob-
bies and occupations, can change over time. New
users may join the network and existing users may
leave. How to model the evolving characteristics of
dynamic graphs and support incremental updates to
model parameters remain largely unaddressed.
Some preliminary works have obtained encouraging
results by using Graph RNNs [27], [29].

o Interpretability and robustness. Because graphs are
often related to other risk-sensitive scenarios, the abil-
ity to interpret the results of deep learning models on
graphs is critical in decision-making problems. For
example, in medicine or disease-related problems,
interpretability is essential in transforming computer
experiments into applications for clinical use. How-
ever, interpretability for graph-based deep learning is
even more challenging than are other black-box mod-
els because graph nodes and edges are often heavily
interconnected. In addition, because many existing
deep learning models on graphs are sensitive to
adversarial attacks as shown in Section 7.2, enhancing
the robustness of the existing methods is another
important issue. Some pioneering works regarding

interpretability and robustness can be found in [161]
and [162], [163], respectively.

8.4 Summary

The above survey shows that deep learning on graphs is a
promising and fast-developing research field that both
offers exciting opportunities and presents many challenges.
Studying deep learning on graphs constitutes a critical
building block in modeling relational data, and it is an
important step towards a future with better machine learn-
ing and artificial intelligence techniques.

ACKNOWLEDGMENTS

The authors thank Jianfei Chen, Jie Chen, William L. Hamil-
ton, Wenbing Huang, Thomas Kipf, Federico Monti, Shirui
Pan, Petar Velickovic, Keyulu Xu, Rex Ying for allowing us
to use their figures. This work was supported in part by
National Program on Key Basic Research Project (No.
2015CB352300), National Key R&D Program of China under
Grand 2018AAA0102004, National Natural Science Founda-
tion of China (No. U1936219, No. U1611461, No. 61772304),
and Beijing Academy of Artificial Intelligence (BAAI). All
opinions, findings, conclusions, and recommendations in
this paper are those of the authors and do not necessarily
reflect the views of the funding agencies.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, pp. 436444, 2015.

[2] G. Hinton et al., “Deep neural networks for acoustic modeling in
speech recognition: The shared views of four research groups,”
IEEE Signal Process. Magazine, vol. 29, no. 6, pp. 82-97, Nov. 2012.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in Proc. Advan-
ces Neural Inf. Processi. Syst., 2012, pp. 1097-1105.

[4] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine transla-
tion by jointly learning to align and translate,” in Proc. 4th Int.
Conf. Learn. Representations, 2015.

[5] A-L. Barabasi, Network Science. Cambridge, UK.: Cambridge
Univ. Press, 2016.

[6] D. I Shuman, S. K. Narang, P. Frossard, A. Ortega, and
P. Vandergheynst, “The emerging field of signal processing on
graphs: Extending high-dimensional data analysis to networks and
other irregular domains,” IEEE Signal Process. Magazine, vol. 30, no. 3,
pp- 83-98, May 2013.

[71 M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: going beyond euclidean data,” IEEE
Signal Process. Magazine, vol. 34, no. 4, pp. 1842, Jul. 2017.

[8] C. Zang, P. Cui, and C. Faloutsos, “Beyond sigmoids: The nettide
model for social network growth, and its applications,” in Proc.
22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2016,
pp- 2015-2024.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 16,2022 at 04:37:25 UTC from IEEE Xplore. Restrictions apply.

https://github.com/rusty1s/pytorch_geometric
https://github.com/rusty1s/pytorch_geometric
https://github.com/dmlc/dgl
https://github.com/alibaba/aligraph
https://github.com/alibaba/euler

ZHANG ETAL.: DEEP LEARNING ON GRAPHS: A SURVEY

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

P. W. Battaglia et al., “Relational inductive biases, deep learning,
and graph networks,” 2018, arXiv: 1806.01261.

J.B. Lee, R. A. Rossi, S. Kim, N. K. Ahmed, and E. Koh, “Attention
models in graphs: A survey,” ACM Trans. Knowl. Discovery Data,
vol. 13,2019, Art. no. 62.

S. Zhang, H. Tong, J. Xu, and R. Maciejewski, “Graph convolu-
tional networks: Algorithms, applications and open challenges,”
Comput. Social Netw., vol. 6, 2019, Art. no. 11.

L. Sun,]J. Wang, P. S. Yu, and B. Li, “Adversarial attack and
defense on graph data: A survey,” 2018, arXiv: 1812.10528.

J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, and M. Sun, “Graph
neural networks: A review of methods and applications,” 2018,
arXiv: 1812.08434.

Z.Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A com-
prehensive survey on graph neural networks,” IEEE Trans. Neu-
ral Netw. Learn. Syst., pp. 1-21, 2020.

S.Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and S. Lin, “Graph
embedding and extensions: A general framework for dimension-
ality reduction,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29,
no. 1, pp. 40-51, Jan. 2007.

W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning
on graphs: Methods and applications,” IEEE Data Eng. Bulletin,
2017.

P. Cui, X. Wang, J. Pei, and W. Zhu, “A survey on network
embedding,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 5,
pp. 833-852, May 2019.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning rep-
resentations by back-propagating errors,” Nature, vol. 323,
pp. 533-536, 1986.

D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” in Proc. 3rd Int. Conf. Learn. Representations, 2014.

N. Srivastava, G. Hinton, A. Krizhevsky, L. Sutskever, and R. Sal-
akhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Machi. Learn. Res., vol. 15, pp. 1929-1958,
2014.

X.Wang, P. Cui,]. Wang, J. Pei, W. Zhu, and S. Yang, “Community
preserving network embedding,” in Proc. 31st AAAI Conf. Artif.
Intell., 2017, pp. 203-209.

J. Leskovec and J. J. Mcauley, “Learning to discover social circles
in ego networks,” in Proc. 25th Int. Conf. Neural Inf. Process. Syst.,
2012, pp 539-547.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Mon-
fardini, “The graph neural network model,” IEEE Trans. Neural
Netw., vol. 20, no. 1, pp. 61-80, Jan. 2009.

Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” in Proc. 5th Int. Conf. Learn. Represen-
tations, 2016.

H. Dai, Z. Kozareva, B. Dai, A. Smola, and L. Song, “Learning
steady-states of iterative algorithms over graphs,” in Proc. Int.
Conf. Mach. Learn., 2018, pp. 1106-1114.

J. You, R. Ying, X. Ren, W. Hamilton, and]. Leskovec,
“Graphrnn: Generating realistic graphs with deep auto-regres-
sive models,” in Proc. Int. Conf. Mach. Learn., 2018, pp. 5694-5703.
Y. Ma, Z. Guo, Z. Ren, E. Zhao, . Tang, and D. Yin, “Streaming
graph neural networks,” 2018, arXiv: 1810.10627.

F. Monti, M. Bronstein, and X. Bresson, “Geometric matrix com-
pletion with recurrent multi-graph neural networks,” in Proc.
Advances Neural Inf. Process. Syst., 2017, pp. 3700-3710.

F. Manessi, A. Rozza, and M. Manzo, “Dynamic graph convolu-
tional networks,” 2017, arXiv: 1704.06199.

K. Cho et al,, “Learning phrase representations using RNN
encoder—-decoder for statistical machine translation,” in Proc.
Conf. Empir. Methods Natural Lang. Process., 2014, pp. 1724-1734.
S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Comput., vol. 9, pp. 17351780, 1997.

M. Gori, G. Monfardini, and F. Scarselli, “A new model for learn-
ing in graph domains,” in Proc. IEEE Int. Joint Conf. Neural Netw.,
2005, pp. 729-734.

P. Frasconi, M. Gori, and A. Sperduti, “A general framework for
adaptive processing of data structures,” IEEE Trans. Neural
Netw., vol. 9, no. 5, pp. 768-786, Sep. 1998.

M. J. Powell, “An efficient method for finding the minimum of a
function of several variables without calculating derivatives,”
Comput. J., vol. 7, 1964, Art. no. 155.

L. B. Almeida, “A learning rule for asynchronous perceptrons
with feedback in a combinatorial environment,” in Proc. 1st Int.
Conf. Neural Netw., 1990, pp. 102-111.

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

267

F. J. Pineda, “Generalization of back-propagation to recurrent
neural networks,” Physical Rev. Lett., vol 59, 1987, Art. no. 2229.
M. A. Khamsi and W. A. Kirk, An Introduction to Metric Spaces and
Fixed Point Theory. Hoboken, NJ, USA: Wiley, 2011.

M. Brockschmidt, Y. Chen, B. Cook, P. Kohli, and D. Tarlow,
“Learning to decipher the heap for program verification,” in Proc.
Workshop Constructive Mach. Learn. Int. Conf. Mach. Learn., 2015.

I. M. Baytas, C. Xiao, X. Zhang, F. Wang, A. K. Jain, and]J. Zhou,
“Patient subtyping via time-aware LSTM networks,” in Proc.
23rd ACM SIGKDD Int. Conf. Know. Discovery Data Mining, 2017,
pp. 65-74.

J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun, “Spectral net-
works and locally connected networks on graphs,” in Proc. 3rd
Int. Conf. Learn. Representations, 2014.

M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional net-
works on graph-structured data,” 2015, arXiv:1506.05163.

M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional
neural networks on graphs with fast localized spectral filtering,” in
Proc. Advances Neural Inf. Process. Syst., 2016, pp. 3844-3852.

T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in Proc. 6th Int. Conf. Learn.
Representations, 2017.

R. Levie, F. Monti, X. Bresson, and M. M. Bronstein, “Cayleynets:
Graph convolutional neural networks with complex rational spec-
tral filters,” IEEE Trans. Signal Process., vol. 67, no. 1, pp. 97-109,
Jan. 2019.

B. Xu, H. Shen, Q. Cao, Y. Qiu, and X. Cheng, “Graph wavelet neu-
ral network,” in Proc. 8th Int. Conf. Learn. Representations, 2019.

D. K. Duvenaud et al., “Convolutional networks on graphs for
learning molecular fingerprints,” in Proc. Advances Neural Inf.
Process. Syst., 2015, pp. 2224-2232.

M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolu-
tional neural networks for graphs,” in Proc. Int. Conf. Mach.
Learn., 2016, pp. 2014-2023.

H. Gao, Z. Wang, and S. Ji, “Large-scale learnable graph convolu-
tional networks,” in Proc. 24th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2018, pp. 1416-1424.

M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end
deep learning architecture for graph classification,” in Proc. 32nd
AAAI Conf. Artif. Intell., 2018, pp. 4438-4445.

J. Atwood and D. Towsley, “Diffusion-convolutional neural
networks,” in Proc. Advances Neural Inf. Process. Syst., 2016,
pp- 2001-2009.

C. Zhuang and Q. Ma, “Dual graph convolutional networks for
graph-based semi-supervised classification,” in Proc. World Wide
Web Conf., 2018, pp. 499-508.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proc. Int.
Conf. Mach. Learn., 2017, pp. 1263-1272.

W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. 31st Int. Conf. Neural Inf.
Process. Syst., 2017, pp. 1025-1035.

F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and
M. M. Bronstein, “Geometric deep learning on graphs and mani-
folds using mixture model CNNs,” in Proc. EEE Conf. Comput.
Vis. Pattern Recognit., 2017, pp. 5425-5434.

S. Kearnes, K. McCloskey, M. Berndl, V. Pande, and P. Riley,
“Molecular graph convolutions: Moving beyond fingerprints,” J.
Comput.-Aided Mol. Des., vol. 30, pp. 595-608, 2016.

R.Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec,
“Hierarchical graph representation learning with differenti-
able pooling,” in Proc. Advances Neural Inf. Process. Syst., 2018,
pp- 4805-4815.

P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” in Proc. 7th Int. Conf.
Learn. Representations, 2018.

J. Zhang, X. Shi, . Xie, H. Ma, I. King, and D.-Y. Yeung, “Gaan:
Gated attention networks for learning on large and spatiotempo-
ral graphs,” in Proc. 34th Conf. Uncertainty Artif. Intell., 2018.

X. Wang et al., “Heterogeneous graph attention network,” in
Proc. World Wide Web Conf., 2019, pp. 2022-2032.

T. Pham, T. Tran, D. Q. Phung, and S. Venkatesh, “Column
networks for collective classification,” in Proc. 31st AAAI Conf.
Artif. Intell., 2017, pp. 2485-2491.

J. Klicpera, A. Bojchevski, and S. Giinnemann, “Predict then
propagate: Graph neural networks meet personalized pag-
erank,” in Proc. 8th Int. Conf. Learn. Representations, 2019.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 16,2022 at 04:37:25 UTC from IEEE Xplore. Restrictions apply.

268

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(711

[72]

(73]

(741

(751

[76]

(771

[78]

[79]

[80]
[81]

[82]

[83]

[84]

[85]

[86]

[87]

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 1, JANUARY 2022

K. Xu, C. Li, Y. Tian, T. Sonobe, K.-I. Kawarabayashi, and
S. Jegelka, “Representation learning on graphs with jumping
knowledge networks,” in Proc. Int. Conf. Mach. Learn., 2018,
pp. 5453-5462.

M. Simonovsky and N. Komodakis, “Dynamic edgeconditioned
filters in convolutional neural networks on graphs,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 29-38.

M. Schlichtkrull, T. N. Kipf, P. Bloem, R. V. D. Berg, I. Titov, and
M. Welling, “Modeling relational data with graph convolutional
networks,” in Proc. Eur. Semantic Web Conf., 2018, pp. 593-607.

Z. Chen, L. Li, and J. Bruna, “Supervised community detection
with line graph neural networks,” in Proc. 8th Int. Conf. Learn.
Representations, 2019.

R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale
recommender systems,” in Proc. 24th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, 2018, pp. 974-983.

J. Chen, J. Zhu, and L. Song, “Stochastic training of graph convo-
lutional networks with variance reduction,” in Proc. Int. Conf.
Mach. Learn., 2018, pp. 942-950.

J. Chen, T. Ma, and C. Xiao, “FastGCN: Fast learning with graph
convolutional networks via importance sampling,” in Proc. 7th
Int. Conf. Learn. Representations, 2018.

W. Huang, T. Zhang, Y. Rong, and]. Huang, “Adaptive sam-
pling towards fast graph representation learning,” in Proc.
Advances Neural Inf. Process. Syst., 2018, pp. 4563-4572.

Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph convo-
lutional networks for semi-supervised learning,” in Proc. 32nd
AAAI Conf. Artif. Intell., 2018, pp. 3538-3545.

F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger,
“Simplifying graph convolutional networks,” in Proc. Int. Conf.
Mach. Learn., 2019, pp. 6861-6871.

T. Maehara, “Revisiting graph neural networks: All we have is
low-pass filters,” 2019, arXiv: 1905.09550.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are
graph neural networks?” in Proc. 8th Int. Conf. Learn. Representa-
tions, 2019.

P. Velickovi¢, W. Fedus, W. L. Hamilton, P. Lio, Y. Bengio, and
R. D. Hjelm, “Deep graph infomax,” in Proc. 8th Int. Conf. Learn.
Representations, 2019.

M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral
techniques for embedding and clustering,” in Proc. Advances Neu-
ral Inf. Process. Syst., 2002, pp. 585-591.

D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets
on graphs via spectral graph theory,” Appl. Comput. Harmonic
Anal., vol. 30, pp. 129-150, 2011.

Z.Zhang, P. Cui, X. Wang,]. Pei, X. Yao, and W. Zhu, “Arbitrary-
order proximity preserved network embedding,” in Proc. 24th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2018,
pp. 2778-2786.

N. Shervashidze, P. Schweitzer, E. J. V. Leeuwen, K. Mehlhorn,
and K. M. Borgwardt, “Weisfeiler-lehman graph kernels,” J.
Mach. Learn. Res., vol. 12, pp. 539-2561, 2011.

O. Levy and Y. Goldberg, “Neural word embedding as implicit
matrix factorization,” in Proc. Advances Neural Inf. Process. Syst.,
2014, pp. 2177-2185.

L. Babai, “Graph isomorphism in quasipolynomial time,” in Proc.
48th Annu. ACM Symp. Theory Comput., 2016, pp. 684—-697.

G. Klir and B. Yuan, Fuzzy sets and fuzzy logic. Upper Saddle
River, NJ, USA: Prentice Hall, 1995.

J. Ma, P. Cui, X. Wang, and W. Zhu, “Hierarchical taxonomy
aware network embedding,” in Proc. 24th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, 2018, pp. 1920-1929.

D. Ruppert, “The elements of statistical learning: Data mining, infer-
ence, and prediction,” J. Royal Statist. Soc., vol. 66, pp. 1309-1315,
2010.

U. Von Luxburg, “A tutorial on spectral clustering,” Statist.
Comput., vol. 17, pp. 395-416, 2007.

L. S. Dhillon, Y. Guan, and B. Kulis, “Weighted graph cuts with-
out eigenvectors a multilevel approach,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 29, no. 11, pp. 1944-1957, Nov. 2007.

D. I. Shuman, M. J. Faraji, and P. Vandergheynst, “A multiscale
pyramid transform for graph signals,” IEEE Trans. Signal Process.,
vol. 64, no. 8, pp. 21192134, Apr. 2016.

B. D. Mckay and A. Piperno, Practical Graph Isomorphism, II. Cam-
bridge, MA, USA: Academic Press, Inc., 2014.

[88]
[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]
[112]
[113]

[114]

[115]

O. Vinyals, S. Bengio, and M. Kudlur, “Order matters: Sequence to
sequence for sets,” in Proc. 5th Int. Conf. Learn. Representations, 2016.
A. Vaswani et al., “Attention is all you need,” in Proc. Advances
Neural Inf. Process. Syst., 2017, pp. 5998-6008.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Rec-
ognit., 2016, pp. 770-778.

A.-L. Barabasi and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, pp. 509-5012, 1999.

J. Ma, P. Cui, and W. Zhu, “Depthlgp: Learning embeddings of
out-of-sample nodes in dynamic networks,” in Proc. 32nd AAAI
Conf. Artif. Intell., 2018, pp. 370-377.

F. Scarselli, A. C. Tsoi, and M. Hagenbuchner, “The vapnik—cher-
vonenkis dimension of graph and recursive neural networks,”
Neural Netw., vol. 108, pp. 248-259, 2018.

S. Verma and Z.-L. Zhang, “Stability and generalization of graph
convolutional neural networks,” in Proc. 25th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, 2019, pp. 1539-1548.

P. Vincent, H. Larochelle, Y. Bengio, and P. A. Manzagol,
“Extracting and composing robust features with denoising
autoencoders,” in Proc. Int. Conf. Mach. Learn., 2008, pp. 1096-1103.
F. Tian, B. Gao, Q. Cui, E. Chen, and T.-Y. Liu, “Learning deep
representations for graph clustering,” in Proc. 28th AAAI Conf.
Artif. Intell., 2014, pp. 1293-1299.

D. Wang, P. Cui, and W. Zhu, “Structural deep network
embedding,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2016, pp. 1225-1234.

S. Cao, W. Lu, and Q. Xu, “Deep neural networks for learning
graph representations,” in Proc. 30th AAAI Conf. Artif. Intell.,
2016, pp. 1145-1152.

R. V. D. Berg, T. N. Kipf, and M. Welling, “Graph convolutional
matrix completion,” in Proc. Int. Conf. Knowl. Discovery Data
Mining, 2018.

K. Tu, P. Cui, X. Wang, P. S. Yu, and W. Zhu, “Deep recursive
network embedding with regular equivalence,” in Proc. 24th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2018,
pp. 2357-2366.

A. Bojchevski and S. Giinnemann, “Deep gaussian embedding of
graphs: Unsupervised inductive learning via ranking,” in Proc.
7th Int. Conf. Learn. Representations, 2018.

T. N. Kipf and M. Welling, “Variational graph auto-encoders,” in
Proc. NIPS Workshop Bayesian Deep Learn., 2016.

D. Zhu, P. Cui, D. Wang, and W. Zhu, “Deep variational network
embedding in wasserstein space,” in Proc. 24th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, 2018, pp. 2827-2836.

S. Pan, R. Hu, G. Long,]J. Jiang, L. Yao, and C. Zhang,
“Adversarially regularized graph autoencoder for graph
embedding,” in Proc. 27th Int. Joint Conf. Artif. Intell., 2018,
pp. 2609-2615.

W. Yuet al., “Learning deep network representations with adver-
sarially regularized autoencoders,” in Proc. 24th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, 2018, pp. 2663-2671.

J. MacQueen et al., “Some methods for classification and analysis
of multivariate observations,” in Proc. 5th Berkeley Symp. Math.
Statist. Probability, 1967, pp. 281-297.

Z. Zhang, “A note on spectral clustering and SVD of graph data,”
2018, arXiv: 1809.11029.

J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in Proc. 24th Int.
Conf. World Wide Web, 2015, pp. 1067-1077.

L. Lovasz et al., “Random walks on graphs: A survey,” Combina-
torics, vol. 2, pp. 1-46, 1993.

L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank
citation ranking: Bringing order to the Web,” Stanford InfoLab,
Stanford, CA, 1999.

S. Kullback and R. A. Leibler, “On information and sufficiency,”
Ann. Math. Statist., vol. 22, pp. 79-86, 1951.

Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. Huang, “A
tutorial on energy-based learning,” Predicting Structured Data, 2006.
D. P. Kingma and M. Welling, “Auto-encoding variational
bayes,” in Proc. 3rd Int. Conf. Learn. Representations, 2014.

S. Vallender, “Calculation of the wasserstein distance between
probability distributions on the line,” Theory Probability Its Appl.,
vol. 18, pp. 784-786, 1974.

1. Goodfellow et al., “Generative adversarial nets,” in Proc. Advan-
ces Neural Inf. Process. Syst., 2014, pp. 2672-2680.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 16,2022 at 04:37:25 UTC from IEEE Xplore. Restrictions apply.

ZHANG ETAL.: DEEP LEARNING ON GRAPHS: A SURVEY

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

J. You, B. Liu, R. Ying, V. Pande, and]. Leskovec, “Graph convolu-
tional policy network for goal-directed molecular graph generation,”
in Proc. Advances Neural Inf. Process. Syst., 2018, pp. 6412—6422.

N. De Cao and T. Kipf, “MolGAN: An implicit generative model
for small molecular graphs,” in Proc. Workshop Theor. Foundations
Appl. Deep Generative Models, 2018.

K. Do, T. Tran, and S. Venkatesh, “Graph transformation policy net-
work for chemical reaction prediction,” in Proc. 25th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, 2019, pp. 750-760.

J. B. Lee, R. Rossi, and X. Kong, “Graph classification using struc-
tural attention,” in Proc. 24th ACM SIGKDD Int. Conf. Knowl. Dis-
covery Data Mining, 2018, pp. 1666-1674.

W. Xiong, T. Hoang, and W. Y. Wang, “Deeppath: A reinforce-
ment learning method for knowledge graph reasoning,” in Proc.
Conf. Empir. Methods Natural Lang. Process., 2017, pp. 564-573.

R. Das et al., “Go for a walk and arrive at the answer: Reasoning
over paths in knowledge bases using reinforcement learning,” in
Proc. 7th Int. Conf. Learn. Representations, 2018.

D. Silver et al., “Mastering the game of go without human knowl-
edge,” Nature, vol. 550, pp. 354-359, 2017.

R.S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function
approximation,” in Proc. Advances Neural Inf. Process. Syst., 2000,
pp- 1057-1063.

H. Wang et al., “Graphgan: Graph representation learning with
generative adversarial nets,” in Proc. 32nd AAAI Conf. Artif.
Intell., 2018, pp. 2508-2515.

Q. Dai, Q. Li, J. Tang, and D. Wang, “Adversarial network
embedding,” in Proc. 32nd AAAI Conf. Artif. Intell., 2018,
pp- 2167-2174.

M. Ding, J. Tang, and J. Zhang, “Semi-supervised learning on
graphs with generative adversarial nets,” in Proc. 27th ACM Int.
Conf. Inf. Knowl. Manage., 2018, pp. 913-922.

A. Bojchevski, O. Shchur, D. Zigner, and S. Glunnemann,
“Netgan: Generating graphs via random walks,” in Proc. Int.
Conf. Mach. Learn., 2018, pp. 610-619.

D. Ziigner, A. Akbarnejad, and S. Glinnemann, “Adversarial attacks
on neural networks for graph data,” in Proc. 24th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, 2018, pp. 2847-2856.

H. Dai ef al., “Adversarial attack on graph structured data,” in
Proc. 35th Int. Conf. Mach. Learn., 2018, pp. 1115-1124.

D. Ziigner and S. Giinnemann, “Adversarial attacks on graph
neural networks via meta learning,” in Proc. 8th Int. Conf. Learn.
Representations, 2019.

B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learn-
ing of social representations,” in Proc. 20th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, 2014, pp. 701-710.

H. Dai, B. Dai, and L. Song, “Discriminative embeddings of
latent variable models for structured data,” in Proc. Int. Conf.
Mach. Learn., 2016, pp. 2702-2711.

J. Qiu, J. Tang, H. Ma, Y. Dong, K. Wang, and]. Tang, “DeeplInf:
Modeling influence locality in large social networks,” in Proc.
24th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2018,
pp- 2110-2119.

J. Ma, C. Zhou, P. Cui, H. Yang, and W. Zhu, “Learning disen-
tangled representations for recommendation,” in Proc. Advances
Neural Inf. Process. Syst., 2019, pp. 5711-5722.

C.W.Coley, R. Barzilay, W. H. Green, T. S. Jaakkola, and K. F. Jensen,
“Convolutional embedding of attributed molecular graphs for phys-
ical property prediction,” J. Chem. Inf. Model., vol. 57, pp. 1757-1772,
2017.

T. Xie and J. C. Grossman, “Crystal graph convolutional neural
networks for an accurate and interpretable prediction of material
properties,” Physical Rev. Lett., vol. 120, 2018, Art. no. 145301.

S. I. Ktena et al., “Distance metric learning using graph convolu-
tional networks: Application to functional brain networks,” in
Proc. Int. Conf. Med. Image Comput. Comput.-Assisted Intervention,
2017, pp. 469-477.

M. Zitnik, M. Agrawal, and J. Leskovec, “Modeling polyphar-
macy side effects with graph convolutional networks,” Bioinfor-
matics, vol. 34, pp. 1457-i466, 2018.

S. Parisot et al., “Spectral graph convolutions for population-
based disease prediction,” in Proc. Int. Conf. Med. Image Comput.
Comput -Assisted Intervention, 2017, pp. 177-185.

F. Dutil, J. P. Cohen, M. Weiss, G. Derevyanko, and Y. Bengio,
“Towards gene expression convolutions using gene interaction
graphs,” in Proc. Int. Conf. Mach. Learn. Workshop Comput. Biol., 2018.

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

269

J. Bastings, 1. Titov, W. Aziz, D. Marcheggiani, and K. Simaan,
“Graph convolutional encoders for syntax-aware neural machine
translation,” in Proc. Conf. Empir. Methods Natural Lang. Process.,
2017, pp. 1957-1967.

D. Marcheggiani and I. Titov, “Encoding sentences with graph
convolutional networks for semantic role labeling,” in Proc. Conf.
Empir. Methods Natural Lang. Process., 2017, pp. 1506-1515.

V. Garcia and J. Bruna, “Few-shot learning with graph neural
networks,” in Proc. 7th Int. Conf. Learn. Representations, 2018.

A. Jain, A. R. Zamir, S. Savarese, and A. Saxena, “Structural-
RNN: Deep learning on spatio-temporal graphs,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2016, pp. 5308-5317.

X. Qi, R. Liao, J. Jia, S. Fidler, and R. Urtasun, “3D graph neural
networks for RGBD semantic segmentation,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 5209-5218.

K. Marino, R. Salakhutdinov, and A. Gupta, “The more you
know: Using knowledge graphs for image classification,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 20-28.

S. Qi, W. Wang, B. Jia, J. Shen, and S.-C. Zhu, “Learning human-
object interactions by graph parsing neural networks,” in Proc.
Eur. Conf. Comput. Vis., 2018, pp. 407—423.

B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional
networks: A deep learning framework for traffic forecasting,” in
Proc. 27th Int. Joint Conf. Artif. Intell., 2018, pp. 3634-3640.

Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional
recurrent neural network: Data-driven traffic forecasting,” in
Proc. 7th Int. Conf. Learn. Representations, 2018.

M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to
represent programs with graphs,” in Proc. 7th Int. Conf. Learn.
Representations, 2018.

Z.Li, Q. Chen, and V. Koltun, “Combinatorial optimization with
graph convolutional networks and guided tree search,” in Proc.
32nd Int. Conf. Neural Inf. Process. Syst., 2018, pp. 537-546.

M. Prates, P. H. Avelar, H. Lemos, L. C. Lamb, and M. Y. Vardi,
“Learning to solve NP-complete problems: A graph neural net-
work for decision TSP,” in Proc. AAAI Conf. Artif. Intell., 2019,
pp. 4731-4738.

S. Sukhbaatar, R. Fergus, and A. Szlam, “Learning multiagent
communication with backpropagation,” in Proc. Advances Neural
Inf. Process. Syst., 2016, pp. 2252-2260.

P. W. Battaglia, R. Pascanu, M. Lai, D. Rezende, and K. Kavukcuoglu,
“Interaction networks for learning about objects, relations and phys-
ics,” in Proc. Advances Neural Inf. Process. Syst., 2016, pp. 4509-4517.

Y. Hoshen, “Vain: Attentional multi-agent predictive modeling,”
in Proc. Advances Neural Inf. Process. Syst., 2017, pp. 2698-2708.

A. Santoro et al., “A simple neural network module for relational
reasoning,” in Proc. 31st Int. Conf. Neural Inf. Process. Syst., 2017,
pp. 4974-4983.

S. Chang, W. Han,]J. Tang, G.-J. Qi, C. C. Aggarwal, and
T. S. Huang, “Heterogeneous network embedding via deep
architectures,” in Proc. 21th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2015, pp. 119-128.

T. Derr, Y. Ma, and J. Tang, “Signed graph convolutional
network,” in Proc. IEEE Int. Conf. Data Mining, 2018, pp. 929-934.
K. Tu, P. Cui, X. Wang, F. Wang, and W. Zhu, “Structural deep
embedding for hyper-networks,” in Proc. 32nd AAAI Conf. Artif.
Intell., 2018, pp. 426-433.

K. Tu, J. Ma, P. Cui, J. Pei, and W. Zhu, “Autone: Hyperpara-
meter optimization for massive network embedding,” in Proc.
25th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2019,
pp- 216-225.

R. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “GNN
explainer: A tool for post-hoc explanation of graph neural
networks,” in Proc. Advances Neural Inf. Process. Syst., 2019,
pp. 9244-9255.

D.Zhu, Z. Zhang, P. Cui, and W. Zhu, “Robust graph convolutional
networks against adversarial attacks,” in Proc. 25th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, 2019, pp. 1399-1407.

M. Jin, H. Chang, W. Zhu, and S. Sojoudi, “Power up! robust
graph convolutional network against evasion attacks based on
graph powering,” 2019, arXiv: 1905.10029.

M. Fey and J. E. Lenssen, “Fast graph representation learning
with PyTorch Geometric,” in Proc. ICLR Workshop Representation
Learn. Graphs Manifolds, 2019.

M. Wang et al., “Deep graph library: Towards efficient and scal-
able deep learning on graphs,” in Proc. ICLR Workshop Representa-
tion Learn. Graphs Manifolds, 2019.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 16,2022 at 04:37:25 UTC from IEEE Xplore. Restrictions apply.

270 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 1, JANUARY 2022

[166] R.Zhu et al., “AliGraph: A comprehensive graph neural network
platform,” in Proc. 45th Int. Conf. Very Large Data Bases, 2019,
pp- 3165-3166.

O. Shchur, M. Mumme, A. Bojchevski, and S. Giinnemann,
“Pitfalls of graph neural network evaluation,” in Proc. Relational
Representation Learn. Workshop, 2018.

Y. Li, O. Vinyals, C. Dyer, R. Pascanu, and P. Battaglia, “Learning
deep generative models of graphs,” 2018, arXiv: 1803.03324.

P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and
T. Eliassi-Rad, “Collective classification in network data,” Al
Magazine, vol. 29, 2008, Art. no. 93.

A. Ortega, P. Frossard, J. Kovacevi¢, J. M. Moura, and
P. Vandergheynst, “Graph signal processing: Overview, chal-
lenges, and applications,” Proc. IEEE, vol. 106, no. 5, pp. 808-828,
May 2018.

[167]

[168]

[169]

[170]

Ziwei Zhang received the BS degree from the
Department of Physics, Tsinghua University, in
2016. He is currently working toward the PhD
degree in the Department of Computer Science
and Technology, Tsinghua University. His research
interests include network embedding and machine
learning on graph data, especially in developing
scalable algorithms for large-scale networks. He
has published several papers in prestigious con-
ferences and journals, including KDD, AAAI,
IJCAI, and the IEEE Transactions on Knowledge
and Data Engineering.

.~

Peng Cui received the PhD degree from Tsinghua
University, in 2010. He is currently an associate pro-
fessor with tenure at Tsinghua University. His
research interests include network representation
learning, human behavioral modeling, and social-
sensed multimedia computing. He has published
more than 100 papers in prestigious conferences
f | and journals in data mining and multimedia. His
T, . recent research efforts have received the SIGKDD
R | 2016 Best Paper Finalist, the ICDM 2015 Best Stu-
dent Paper Award, the SIGKDD 2014 Best Paper
Finalist, the IEEE ICME 2014 Best Paper Award, the ACM MM12 Grand
Challenge Multimodal Award, and the MMM13 Best Paper Award. He is an
associate editor of the IEEE Transactions on Knowledge and Data Engi-
neering, the IEEE Transactions on Big Data, the ACM Transactions on Mul-
timedia Computing, Communications, and Applications, the Elsevier
Journal on Neurocomputing, etc. He was the recipient of the ACM China
Rising Star Award in 2015.

Wenwu Zhu (Fellow, IEEE) received the PhD
degree from New York University, in 1996. He is
currently a professor and deputy head of the
Computer Science Department, Tsinghua Univer-
sity and vice dean of National Research Center
on Information Science and Technology. Prior to
his current post, he was a senior researcher and
research manager at Microsoft Research Asia.
He was the chief scientist and director at Intel
Research China from 2004 to 2008. He worked at
Bell Labs New Jersey as a member of technical
staff during 1996-1999. He served as the editor-in-chief for the IEEE
Transactions on Multimedia (TMM) from January 1, 2017, to December
31, 2019. He has been serving as vice EiC for the IEEE Transactions on
Circuits and Systems for Video Technology (TCSVT) and the chair of the
steering committee for IEEE TMM since January 1, 2020. His current
research interests include areas of multimedia computing and network-
ing, and big data. He has published more than 400 papers in the referred
journals and received nine best paper awards including IEEE TCSVT in
2001 and 2019, and ACM Multimedia 2012. He is an AAAS fellow, SPIE
fellow and a member of the European Academy of Sciences (Academia
Europaea).

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 16,2022 at 04:37:25 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

