

Frontiers in GNN and Network Embedding

Peng Cui, Ziwei Zhang

Tsinghua University

Network (Graph)

2

The general description of data and their relations.

Many types of data are networks

Social Networks

Internet of Things

Biology Networks

Finance Networks

Information Networks

Logistic Networks

Graphs in NLP

Original text

true

Abstract Meaning Representation

Figure 1: An example of AMR graph meaning "Ryan's description of himself: a genius."

Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling, EMNLP 2017 Large-Scale Hierarchical Text Classification with Recursively Regularized Deep Graph-CNN, WWW 2018 A Graph-to-Sequence Model for AMR-to-Text Generation, ACL 2018

Knowledge Graph

https://yashuseth.blog/2019/10/08/introduction-question-answering-knowledge-graphs-kgqa/ Building and Querying an Enterprise Knowledge Graph, *TSC 2019* 5

NLP + Computer Vision

Scene Graph

Visual Question Answering

(a) Q: What color is the umpire's shirt (b) Q: What color is the umpire's shirt

Neural Motifs: Scene Graph Parsing with Global Context, CVPR 2018 Aligned Dual Channel Graph Convolutional Network for Visual Question Answering, ACL 2020

Why network is important?

In few cases, you only care about a subject but not its relations with other subjects.

Image Characterization

Social Capital

Reflected by relational subjects

Decided by relational subjects

Many applications are intrinsically network problems

Recommendation Systems

Link prediction in bipartite graphs

Many applications are intrinsically network problems

Financial credit & risk management

Node importance & classification

6

Many applications are intrinsically network problems

New material discovery

Materials discovery engine concept

Subgraph pattern discovery

7

Graph as a data model

□ The last resort for the curse of complexity in real applications

□ Geographical networks, relationships, etc.

Divide-and-conquer in modeling

Individual nodes and edges are well structured

Global structures are weakly organized

Networks are not *learning-friendly*

Pipeline for network analysis

Learning from networks

Network Embedding

Network Embedding and GNN

Graph Neural network vs. Network embedding

- In some sense, they are different
- Graphs exist in *mathematics* (Data Structure)
 - Mathematical structures used to model pairwise relations between objects
- Networks exist in the real world (Data)
 - □ Social networks, logistic networks, biology networks, transaction networks, etc.
- A network can be represented by a graph
- A dataset that is not a network can also be represented by a graph

GNN for Natural Language Processing

- □ Many papers on BERT + GNN.
- BERT is for retrieval.
 - It creates an initial graph of relevant entities and the initial evidence.
- □ GNN is for reasoning.
 - It collects evidence (i.e., old messages on the entities) and arrive at new conclusions (i.e., new messages on the entities), by passing the messages around and aggregating them.

Cognitive Graph for Multi-Hop Reading Comprehension at Scale. Ding et al., *ACL 2019.* Dynamically Fused Graph Network for Multi-hop Reasoning. Xiao et al., *ACL 2019.*

GNN for Computer Vision

A popular trend in CV is to construct a graph during the learning process
To process multiple objects or parts in a scene, and to infer their relationships
Example: Scene graphs

Scene Graph Generation by Iterative Message Passing. Xu et al., *CVPR 2017.* Image Generation from Scene Graphs. Johnson et al., *CVPR 2018.*

GNN for Symbolic Reasoning

We can view the process of symbolic reasoning as a directed acyclic graph
Many recent efforts use GNNs to perform symbolic reasoning

Figure 1: The Neural State Machine is a graph network that simulates the computation of an automaton.

Learning by Abstraction: The Neural State Machine. Hudson & Manning, *NeurIPS 2019* Can Graph Neural Networks Help Logic Reasoning? Zhang et al., *arXiv 1906.02111* Symbolic Graph Reasoning Meets Convolutions. Liang et al., *NeurIPS 2018*

GNN for Structural Equation Modeling

- Structural equation modeling, a form of causal modeling, tries to describe the relationships between the variables as a directed acyclic graph (DAG)
- GNN can be used to represent a nonlinear structural equation and help find the DAG, after treating the adjacency matrix as parameters

DAG-GNN: DAG Structure Learning with Graph Neural Networks. Yu et al., ICML 2019

Pipeline for (most) GNN works

□ Co-occurrence (neighborhood)

□ High-order proximities

Communities

Heterogeneous networks

Pipeline for (most) Network Embedding works

Learning for Networks vs. Learning via Graphs

Learning for Networks

The intrinsic problems NE is solving

Reducing representation dimensionality while preserving necessary topological structures and properties.

The intrinsic problem GNN is solving

Fusing topology and features in the way of smoothing features with the assistance of topology.

Network Embedding vs. GNN

There is no better one, but there is more proper one.

Learning from networks

Network Embedding

Network Embedding

Can apply classical ML methods

The ultimate goal

Network Inference

- Node importance
- Community detection
- Network distance
- Link prediction
- Node classification
- Network evolution

in Vector Space

The goal of network embedding

Transform network nodes into vectors that are fit for off-the-shelf machine learning models

Outline

- Structure-preserved network embedding
- Property-preserved network embedding
- Dynamic network embedding

Outline

- Structure-preserved network embedding
- Property-preserved network embedding
- Dynamic network embedding

Network Structures

High-Order Proximity

Capturing the underlying structure of networks

- Advantages:
 - Solve the sparsity problem of network connections
 - Measure indirect relationship between nodes

DeepWalk

Exploit truncated random walks to define neighborhoods of a node.

B. Perozzi et al. Deepwalk: Online learning of social representations. KDD 2014.

LINE

Jian Tang et al. LINE: Large-scale Information Network Embedding. WWW 2015.

SDNE – Structural Deep Network Embedding

(preserve second-order proximity)

Unsupervised Autoencoder (preserve second-order proximity)

Daixin Wang et al. Structural Deep Network Embedding. KDD, 2016.

Shaosheng Cao et al. GraRep: Learning Graph Representations with Global Structural Information. CIKM 2015.

What is the *right* order?

Different networks/tasks require different high-order proximities
 E.g., multi-scale classification (Bryan Perozzi, et al, 2017)

- E.g., networks with different scales and sparsity
- Proximities of different orders can also be arbitrarily weighted
 E.g., equal weights, exponentially decayed weights (Katz)

What is the *right* order?

Existing methods can only preserve one fixed high-order proximity
 Different high-order proximities are calculated separately

→ How to preserve arbitrary-order proximity while guaranteeing accuracy and efficiency?

Problem Formulation

□ High-order proximity: a polynomial function of the adjacency matrix

 $S = f(A) = w_1 A^1 + w_2 A^2 + \dots + w_q A^q$

 \square q: order; $w_1 \dots w_q$: weights, assuming to be non-negative

□ A: could be replaced by other variations (such as the Laplacian matrix)

Objective function: matrix factorization

$$\min_{U^*, V^*} \left\| S - U^* {V^*}^T \right\|_F^2$$

 \square $U^*, V^* \in \mathbb{R}^{N \times d}$: left/right embedding vectors

□ d: dimensionality of the space

Optimal solution: Singular Value Decomposition (SVD)

 $\Box [U, \Sigma, V]: \text{ top-d SVD results}$

$$U^* = U\sqrt{\Sigma}, \qquad V^* = V\sqrt{\Sigma}$$

Eigen-decomposition Reweighting

Eigen-decomposition reweighting

THEOREM 4.2 (EIGEN-DECOMPOSITION REWEIGHTING). If $[\lambda, \mathbf{x}]$ is an eigen-pair of \mathbf{A} , then $[\mathcal{F}(\lambda), \mathbf{x}]$ is an eigen-pair of $\mathbf{S} = \mathcal{F}(\mathbf{A})$.

■ **Insights**: high-order proximity is simply re-weighting dimensions! $U^* = U\sqrt{\Sigma}, V^* = V\sqrt{\Sigma}$

Preserving Arbitrary-Order Proximity

□ Shifting across different orders/weights:

- Preserving arbitrary-order proximity
- Low marginal cost
- Accurate and efficient

Experimental Results

Link Prediction

Billion-Scale Networks

- Existing network embeddings (e.g., AROPE) can handle million-scale networks
- But real graphs can have billions of nodes and edges
 - Social Networks
 - □ WeChat: 1 billion monthly active users (March, 2018)
 - □ Facebook: 2 billion active users (2017)
 - E-commerce Networks

- □ Amazon: 353 million products, 310 million users, 5 billion orders (2017)
- Citation Networks
 - □ 130 million authors, 233 million publications, 754 million citations (Aminer, 2018)

How to scale embedding methods to billion-scale networks?

Random Projection for Matrix Factorization

□ Objective function: matrix factorization of preserving high-order proximity

 $\min_{U,V} ||S - UV^T||_p^2$ $S = f(A) = \alpha_1 A^1 + \alpha_2 A^2 + \dots + \alpha_q A^q$

Essentially a dimensionality reduction problem

Random projection: optimization-free for dimensionality reduction

- Basic idea: randomly project data into a low-dimensional subspace
- Extremely efficient and friendly to distributed computing
- **D** Denote $R \in \mathbb{R}^{N \times d}$ as a Gaussian random matrix

$$R_{ij} \sim \mathcal{N}\left(0, \frac{1}{d}\right)$$

Surprisingly simple result:

$$U = SR$$

Theoretical Guarantee

■ Slight modification: assuming positive semi-definite and using 2-norm $\min_{U} \|SS^{T} - UU^{T}\|_{2}$ $S = f(A) = \alpha_{1}A^{1} + \alpha_{2}A^{2} + \dots + \alpha_{q}A^{q}$

□ Theoretical guarantee

Theorem 1. For any similarity matrix **S**, denote its rank as $r_{\mathbf{S}}$. Then, for any $\epsilon \in (0, \frac{1}{2})$, the following equation holds:

$$P\left[\left\|\mathbf{S}\cdot\mathbf{S}^{T}-\mathbf{U}\cdot\mathbf{U}^{T}\right\|_{2} > \epsilon\left\|\mathbf{S}^{T}\cdot\mathbf{S}\right\|_{2}\right] \leq 2r_{\mathbf{S}}e^{-\frac{\left(\epsilon^{2}-\epsilon^{3}\right)d}{4}},$$

where $\mathbf{U} = \mathbf{S} \cdot \mathbf{R}$ and \mathbf{R} is a Gaussian random matrix.

Basically, random projection can effectively minimize the objective function
 However, calculating *S* is still very time consuming

RandNE: Iterative Projection

□ Iterative projection: can be calculated iteratively

$$U = SR = (\alpha_1 A^1 + \alpha_2 A^2 + \dots + \alpha_q A^q)R$$
$$= \alpha_1 A^1 R + \alpha_2 A^2 R + \dots + \alpha_q A^q R$$
$$\times A \times A \times A \times A$$

□ Why efficient?

- \square A: N × N sparse adjacency matrix
- \square R: N × d low-dimensional matrix
- Associative law of matrix multiplication

Time Consuming!

51

Distributed Calculation

□ Iterative random projection only involves matrix multiplication $U_i = AU_{i-1}$

- **Each dimension** can be calculated separately
 - Property of sparse matrix multiplication
- No communication is needed during calculation!

Experimental Results

D Running time

AUC SCORES OF LINK PREDICTION.

	Dataset	BlogCatalog	Flickr	Youtube
RandNE	RandNE	0.944	0.940	0.887
DeepWalk	DeepWalk	0.760	0.938	0.909
LINE	$LINE_{1st}$	0.667	0.909	0.847
Node2vec	$LINE_{2nd}$	0.762	0.932	0.959
SDNE	Node2vec	0.650	0.865	0.778
	SDNE	0.940	0.926	_

At least dozens of times faster

Superior or comparable performance

Section Summary

Outline

- Structure-preserved network embedding
- Property-preserved network embedding
- Dynamic network embedding

Why preserve network properties?

TransitivityThe Transitivity Phenomenon Embedding Space

However, real network data is complex...

Non-transitivity

The Co-existence of *Transitivity* and *Non-transitivity*

How to incorporate non-transitivity in the embedding space?

Asymmetric Transitivity

Distance metric in the embedding space is symmetric. How to incorporate *Asymmetric Transitivity*?

Non-transitivity

The source of non-transitivity: *Each node has multiple similarity components*

Non-transitive Embedding: represent non-transitive data with multiple latent similarity components

M. Ou, et al. Non-transitive Hashing with Latent Similarity Components. KDD, 2015.

Asymmetric Transitivity

All existing methods fail..

Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, Wenwu Zhu. Asymmetric Transitivity Preserving Graph Embedding. KDD, 2016.

Section Summary

- Compared with network structures, network properties have a large space to explore in network embedding
- □ Transitivity is important for network inference.
- Uncertainty provides evidence in making network inference.
- □ Many other property issues:
 - □ The right embedding space: Euclidean space?
 - Power-law distribution
 - □ ...

Outline

- Structure-preserved network embedding
- Property-preserved network embedding
- Dynamic network embedding

Dynamic Networks

Networks are dynamic in nature

- □ New (old) nodes are added (deleted)
 - □ New users, products, etc.
- The edges between nodes evolve over time
 - Users add or delete friends in social networks, or neurons establish new connections in brain networks.
- How to efficiently incorporate the dynamic changes when networks evolve?

Key problems in dynamic network embedding

- I : Out-of-sample nodes
- II : Incremental edges
- III: Aggregated error
- IV: Scalable optimization

Challenge: High-order Proximity

□ High-order proximity

Critical structural property of networks

□ Measure indirect relationship between nodes

Capture the structure of networks with different scales and sparsity

Network Embedding vs. Traditional Graph Embedding

Challenge: High-order Proximity

Key problems in dynamic network embedding

- I : Out-of-sample nodes
- II : Incremental edges
- III: Aggregated error
- IV: Scalable optimization

Problem

□ To infer embeddings for out-of-sample nodes

- □ G=(V, E) evolves into G'=(V', E'), where $V' = V \cup V^*$.
- **n** old nodes: $V = \{v_1, ..., v_n\}$, m new nodes: $V^* = \{v_{n+1}, ..., v_{n+m}\}$
- **D** Network embedding $f: V \to \mathbb{R}^d$
- U We know f(V) for old nodes, want to infer f(V') for new nodes.

Challenges

- Preserve network structures
 - □ E.g., high-order proximity
 - Need to incorporate prior knowledge on networks
- Share similar characteristics with in-sample embeddings
 - E.g. magnitude, mean, variance
 - □ Requires a model with great expressive power to fit the data well
- Low computational cost

Jianxin Ma, et al. DepthLGP: Learning Embeddings of Out-of-Sample Nodes in Dynamic Networks. AAAI, 2018.

Nonparametric probabilistic modeling + Deep Learning

Jianxin Ma, et al. DepthLGP: Learning Embeddings of Out-of-Sample Nodes in Dynamic Networks. AAAI, 2018.

DepthLGP

□ Design a kernel for the *k*th (*k*=1,...,*s*) dimension of $h(\cdot)$

¹The matrix inversion can be bypassed without approximation.

 $^{2}a^{(k)}_{v}$ indicates how much attention we pay to a node. It is learned for an insample node, but fixed to one for an out-of-sample node, as we are always interested in out-of-sample nodes.
Experimental Results: Classification

		Network	Baselines			Th	is Work	Upper Bound	
Metric	Embedding		LocalAvg	MRG	LabelProp	hLGP	DepthLGP	(rerunning)	
Macro-F1(%)	LINE	DBLP	37.89	42.15	40.83	47.33	48.25	(49.07)	
		PPI	10.52	10.02	12.42	13.42	13.72	(13.91)	
		BlogCatalog	13.25	11.30	17.07	17.41	18.03	(18.90)	
	GraRep	DBLP	50.61	55.79	55.02	57.43	58.67	(62.92)	
	-	PPI	13.65	13.75	12.38	14.80	14.84	(15.33)	
		BlogCatalog	14.76	14.80	14.71	15.94	18.45	(20.15)	
	node2vec	DBLP	53.83	59.34	59.25	60.89	62.63	(64.87)	
		PPI	15.05	13.43	13.78	15.85	16.54	(16.81)	
		BlogCatalog	15.10	14.04	19.16	19.77	20.32	(20.82)	
Micro-F1(%)	LINE	DBLP	49.58	50.49	50.88	54.01	54.94	(55.84)	
		PPI	18.10	15.71	18.81	20.71	21.42	(21.43)	
		BlogCatalog	27.40	23.21	30.79	31.36	31.90	(32.20)	
	GraRep	ĎBLP	60.17	60.62	60.48	61.44	62.29	(65.44)	
		PPI	20.23	20.35	20.23	20.79	21.44	(21.88)	
		BlogCatalog	36.44	30.79	33.90	37.57	38.14	(38.37)	
	node2vec	DBLP	60.54	62.29	62.52	62.83	64.56	(65.63)	
		PPI	19.70	18.25	18.25	22.63	23.11	(23.41)	
		BlogCatalog	34.83	25.82	36.94	37.96	39.64	(40.34)	

Jianxin Ma, et al. DepthLGP: Learning Embeddings of Out-of-Sample Nodes in Dynamic Networks. AAAI, 2018.

Key problems in dynamic network embedding

- I : Out-of-sample nodes
- II : Incremental edges
- III: Aggregated error
- IV: Scalable optimization

Problem: Error Accumulation

Eigen perturbation is at the cost of inducing approximation

Problem: error accumulation is inevitable

Solution: SVD Restarts

Solution: restart SVD occasionally

- What are the appropriate time points?
 - Too early restarts: waste of computation resources
 - Too late restarts: serious error accumulation

Naïve Solution

- Naïve solution: fixed time interval or fixed number of changes
 Difficulty: error accumulation is not uniform
- Normalized Number of Edges FACEBOOK INTERNET FACEBOOK DBLP MATH WIKI DBLP INTERNET MATH WIKI Normalized Time Interval .50 4 .25 .00 2 0.75 0.50 2468 2 4 4 6 2 4 6 8 6 6 8 8 2 4 8 8 2 4 6 2 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 Count of Restart Count of Restart

Existing Method

Existing method: monitor loss (Chen and Candan, KDD 2014)
 Loss in SVD:

 $\mathcal{J} = \|S - U\Sigma V^T\|_F^2$

S: target matrix, $[U, \Sigma, V]$: results of SVD

Problem: loss includes approximation error and intrinsic loss in SVD

Framework: Monitor Margin

- Observation: the margin between the current loss and the intrinsic loss in SVD is the actual accumulated error
 - □ Current loss: $\mathcal{J} = \|S U\Sigma V^T\|_F^2$ □ Intrinsic loss: $\mathcal{L}(S, k) = \min_{U^*, \Sigma^*, V^*} \|S - U^*\Sigma^*V^{*T}\|_F^2$, k: dimensionality

Ziwei Zhang, et al. TIMERS: Error-Bounded SVD Restart on Dynamic Networks. **AAAI**, 2018.

Solution: Lazy Restarts

Lazy restarts: restart only when the margin exceeds the threshold

Problem: intrinsic loss is hard to compute

Direct calculation has the same time complexity as SVD

Relaxation: an upper bound on margin

\square A lower bound on intrinsic loss $\mathcal{L}(S,k)$

$$\mathcal{L}(\mathbf{S}_t, k) \ge B(t) \Rightarrow \frac{\mathcal{J}(t) - \mathcal{L}(\mathbf{S}_t, k)}{\mathcal{L}(\mathbf{S}_t, k)} \le \frac{\mathcal{J}(t) - B(t)}{B(t)}$$

 $\mathcal{J}(t)$: current loss; $\mathcal{L}(S_t,k)$: intrinsic loss; B(t): bound of intrinsic loss

A Lower Bound of SVD Intrinsic Loss

□ Idea: use matrix perturbation

Theorem 1 (A Lower Bound of SVD Intrinsic Loss). If S and ΔS are symmetric matrices, then:

$$\mathcal{L}(\mathbf{S} + \Delta \mathbf{S}, k) \ge \mathcal{L}(\mathbf{S}, k) + \Delta tr^2(\mathbf{S} + \Delta \mathbf{S}, \mathbf{S}) - \sum_{l=1}^k \lambda_l, \quad (9)$$

where $\lambda_1 \geq \lambda_2 \dots \geq \lambda_k$ are the top-k eigenvalues of $\nabla_{S^2} = \mathbf{S} \cdot \Delta \mathbf{S} + \Delta \mathbf{S} \cdot \mathbf{S} + \Delta \mathbf{S} \cdot \Delta \mathbf{S}$, and $\Delta tr^2 (\mathbf{S} + \Delta \mathbf{S}, \mathbf{S}) = tr ((\mathbf{S} + \Delta \mathbf{S}) \cdot (\mathbf{S} + \Delta \mathbf{S})) - tr(\mathbf{S} \cdot \mathbf{S}).$

Intuition: treat changes as a perturbation to the original network

Time Complexity Analysis

Theorem 2. The time complexity of calculating B(t) in Eqn (13) is $O(M_S + M_L k + N_L k^2)$, where M_S is the number of the non-zero elements in ΔS , and N_L , M_L are the number of the non-zero rows and elements in ∇_{S^2} respectively.

- If every node has a equal probability of adding new edges, we have: $M_L \approx 2d_{avg}M_S$, where d_{avg} is the average degree of the network.
- For Barabasi Albert model (Barabási and Albert 1999), a typical example of preferential attachment networks, we have: $M_L \approx \frac{12}{\pi^2} \left[log(d_{max}) + \gamma \right] M_S$, where d_{max} is the maximum degree of the network and $\gamma \approx 0.58$ is a constant.

Conclusion: the complexity is only linear to the local dynamic changes

Experimental Results: Approximation Error

□ Fixing number of restarts

Dataset		av_{i}	g(r)		max(r)				
	TIMERS	LWI2	Heu-FL	Heu-FT	TIMERS	LWI2	Heu-FL	Heu-FT	
FACEBOOK	0.005	0.020	0.009	0.011	0.014	0.038	0.025	0.023	
MATH	0.037	0.057	0.044	0.051	0.085	0.226	0.117	0.179	
WIKI	0.053	0.086	0.071	0.281	0.139	0.332	0.240	0.825	
DBLP	0.042	0.110	0.053	0.064	0.121	0.386	0.198	0.238	
INTERNET	0.152	0.218	0.196	0.961	0.385	0.806	0.647	1.897	

G Fixing maximum error

27%~42% Improvement

Section Summary

- I : Out-of-sample nodes
 - DepthLGP = Non-parametric GP + DNN
- II : Incremental edges
 - DHPE: Generalized Eigen Perturbation
- III: Aggregated error
 - TIMERS: A theoretically guaranteed SVD restart strategy
- IV: Scalable optimization

• D-SGD: A iteration-wise weighted SGD for highly dynamic data

Recap: Network Embedding

- Structure-preserved network embedding
- Property-preserved network embedding
- Dynamic network embedding

Learning from networks

Graph Neural Networks

Can we design a learning mechanism to directly work on graphs?

The First Graph Neural Network

Basic idea: a recursive definition of states

$$\mathbf{s}_{i} = \sum_{j \in \mathcal{N}(i)} \mathcal{F}\left(\mathbf{s}_{i}, \mathbf{s}_{j}, \mathbf{F}_{i}^{V}, \mathbf{F}_{j}^{V}, \mathbf{F}_{i,j}^{E}\right)$$

□ A simple example: PageRank

F. Scarselli, et al. The graph neural network model. IEEE TNN, 2009.

Many GNNs have emerged since then

Picture credit to Thomas Kipf

How are GNNs compared with other NNs?

Capture information from graph neighborhoods

Capture information from nearby grids (i.e., a 2-D graph)

Capture information from contexts(i.e., a 1-D graph)

We need to exchange information within neighborhoods

Picture credit to GraphSAGE (NIPS 17), PATCHY-SAN (ICML 16)

Message-passing Framework

□ Formulation:

$$\mathbf{m}_{i}^{(l)} = \operatorname{AGG}(\{\mathbf{h}_{j}^{(l)}, \forall j \in \tilde{\mathcal{N}}_{i}\})$$
$$\mathbf{h}_{i}^{(l+1)} = \operatorname{UPDATE}([\mathbf{h}_{i}^{(l)}, \mathbf{m}_{i}^{(l)}])$$

 \Box h_i^(l): representation of node v_i in the l^{th} layer

 \square m^(l): messages for node v_i in the l^{th} layer by aggregating neighbor representations

J. Gilmer, et al. Neural message passing for quantum chemistry. *ICML, 2017.* W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs. *NIPS, 2017.*

Graph Convolutional Networks (GCN)

■ Main idea: averaging messages from direct neighborhoods $\mathbf{H}^{l+1} = \rho \left(\tilde{\mathbf{D}}^{-\frac{1}{2}} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-\frac{1}{2}} \mathbf{H}^{l} \boldsymbol{\Theta}^{l} \right)$

□ Stacking multiple layers like standard CNNs:

State-of-the-art results on node classification

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. ICLR, 2017.

□ Some expected properties of GNNs:

Trained end-to-end for downstream tasks

- V
- Vs. network embedding: unsupervised representation learning to handle various tasks
- Utilize node features and graph structures simultaneously
- □ A deep learning model
- Can handle real applications with data represented as graphs

Are existing GNNs good enough?

Outline

- **Does GNN fuse** *feature* and *topology* optimally?
- □ Is GNN really a *deep* model?
- Technical challenges in real applications: robustness, explainability and applicability

Outline

- **Does GNN fuse** *feature* and *topology* optimally?
- □ Is GNN really a *deep* model?
- Technical challenges in real applications: robustness, explainability and applicability

The intrinsic problem GCN is solving

Fusing topology and features in the way of smoothing features with the assistance of topology with a deep model.

Revisiting Graph Neural Networks All We Have is Low-Pass Filters, *arXiv* 1905.09550 Understanding the Representation Power of Graph Neural Networks in Learning Graph Topology, *NeurIPS* 2019

Can GNNs Fully Preserve Graph Structures?

- When feature plays the key role, GNN performs good
- □ How about the contrary?
- Synthesis data: stochastic block model + random features
 - DeepWalk greatly outperforms all the GCNs
 - Recall the message-passing framework

 $\mathbf{m}_{i}^{(l)} = \operatorname{AGG}(\{\mathbf{h}_{j}^{(l)}, \forall j \in \tilde{\mathcal{N}}_{i}\})$ Initialized as node features

 $\mathbf{h}_{i}^{(l+1)} = \text{UPDATE}([\mathbf{h}_{i}^{(l)}, \mathbf{m}_{i}^{(l)}])$ Graph structures only provide neighborhoods in aggregation

Initial node features provide important inductive bias!

Method	Results					
Random	10.0					
GCN-1	29.7					
GCN-2	48.4					
GCN-3	56.2					
GCN-5	53.3					
DeepWalk	99.9					

GCN-X: X number of layers

Can GNNs Fully Preserve Graph Structures?

Theoretical analysis: node features as "true signal", GNNs as a low-pass filtering

□ Simplified GCN^[1]: removing all non-linearity

$$H^{(l)} = S^{l} H^{(0)}$$

$$S = \widetilde{D}^{-1/2} \widetilde{A} \widetilde{D}^{-1/2} = I - \widetilde{L}_{Sym}$$

■ From graph signal processing, $f' = S^l f$ corresponds to a spectral filter ^[2] $g(\lambda) = (1 - \hat{\lambda})^l$

Thus GNNs are inevitably feature-centric

■ More recent results on learning graph moments ^[3]:

Proposition 1. A graph convolutional network with n layers, and no bias terms, in general, can learn f(A)_i = ∑_j (Aⁿ)_{ij} only if n = p or n > p if the bias is allowed.
I Graph moment: similar to high-order proximities in network embedding

- 1. Simplifying Graph Convolutional Networks, ICML 2019
- 2. Revisiting Graph Neural Networks All We Have is Low-Pass Filters, *arXiv* 1905.09550
- 3. Understanding the Representation Power of Graph Neural Networks in Learning Graph Topology, NeurIPS 2019

A New Perspective to Understand GNNs

■ How can we empower GNNs to preserve graph structures well?

□ A new perspective: treating GNNs as a type of (non-linear) dimensionality reduction

□ Three-steps

- (1) Projecting graph structures into a subspace spanned by node representations in the last step
- (2) The projected representations are linearly transformed followed by a non-linear mapping
- (3) Repeat the process by using the new node representations as bases
- □ Why are the existing GNNs feature-centric?
- \rightarrow The initial space is solely determined by node features!

Ziwei Zhang, Peng Cui, Jian Pei, Xin Wang, Wenwu Zhu. Eigen-GNN: A Graph Structure Preserving Plug-in for GNNs. arXiv, 2006.04330.

Eigen-GNN: A Graph Structure Preserving Plug-in

100

Framework

X: node features; Q: top-d eigenvector of a graph structure matrix; $f(\cdot)$: a simple function such as normalization **Experimental results**:

Ziwei Zhang, Peng Cui, Jian Pei, Xin Wang, Wenwu Zhu. Eigen-GNN: A Graph Structure Preserving Plug-in for GNNs. arXiv, 2006.04330.

Can GNNs Fully Preserve Node Features?

□ Though GNNs have a feature-driven mechanism, can they preserve node features well?

Case 1

Case 2

Correlated TopologyRandom FeaturesRandom topologyCorrelated FeaturesDeepWalk > GCNMLP> GCN

- **Reason:** the neighborhood only depends on structures (i.e., not depend on features)
- How to find the most suitable neighborhoods adaptively?

GNNs also fail in preserving node features!

Adaptive Multi-channel GCN

Specific Convolution Module

- **D** Topology Graph $G_t = (\mathbf{A}, \mathbf{X})$ $\mathbf{Z}_t^{(l)} = ReLU(\tilde{\mathbf{D}}_t^{-\frac{1}{2}} \tilde{\mathbf{A}}_t \tilde{\mathbf{D}}_t^{-\frac{1}{2}} \mathbf{Z}_t^{(l-1)} \mathbf{W}_t^{(l)}),$
- □ Feature Graph $G_f = (\mathbf{A}_f, \mathbf{X})$ $\mathbf{Z}_f^{(l)} = ReLU(\tilde{\mathbf{D}}_f^{-\frac{1}{2}} \tilde{\mathbf{A}}_f \tilde{\mathbf{D}}_f^{-\frac{1}{2}} \mathbf{Z}_f^{(l-1)} \mathbf{W}_f^{(l)}),$

Adaptive Multi-channel GCN

Common Convolution Module

- \Box Topology Graph $G_t = (\mathbf{A}, \mathbf{X})$
 - $\mathbf{Z}_{ct}^{(l)} = ReLU(\tilde{\mathbf{D}}_t^{-\frac{1}{2}}\tilde{\mathbf{A}}_t\tilde{\mathbf{D}}_t^{-\frac{1}{2}}\mathbf{Z}_{ct}^{(l-1)}\mathbf{W}_c^{(l)}),$
- **□** Feature Graph $G_f = (\mathbf{A}_f, \mathbf{X})$

$$\mathbf{Z}_{cf}^{(l)} = ReLU(\tilde{\mathbf{D}}_{f}^{-\frac{1}{2}}\tilde{\mathbf{A}}_{f}\tilde{\mathbf{D}}_{f}^{-\frac{1}{2}}\mathbf{Z}_{cf}^{(l-1)}\mathbf{W}_{c}^{(l)}),$$

Parameter Sharing

Common Embedding

$$\mathbf{Z}_C = (\mathbf{Z}_{CT} + \mathbf{Z}_{CF})/2.$$

Adaptive Multi-channel GCN

O

Attention Mechanism

 $(\boldsymbol{\alpha}_t, \boldsymbol{\alpha}_c, \boldsymbol{\alpha}_f) = att(\mathbf{Z}_T, \mathbf{Z}_C, \mathbf{Z}_F),$

$$\begin{aligned} \mathbf{\alpha}_T &= diag(\boldsymbol{\alpha}_t) \ \boldsymbol{\alpha}_C &= diag(\boldsymbol{\alpha}_c) \ \boldsymbol{\alpha}_F = diag(\boldsymbol{\alpha}_f) \\ \mathbf{Z} &= \boldsymbol{\alpha}_T \cdot \mathbf{Z}_T + \boldsymbol{\alpha}_C \cdot \mathbf{Z}_C + \boldsymbol{\alpha}_F \cdot \mathbf{Z}_F. \end{aligned}$$

\Box How to Calculate α_t

$$\omega_T^i = \mathbf{q}^T \cdot tanh(\mathbf{W}_T \cdot (\mathbf{z}_T^i)^T + \mathbf{b}_T).$$

$$\alpha_T^i = softmax(\omega_T^i) = \frac{exp(\omega_T^i)}{exp(\omega_T^i) + exp(\omega_C^i) + exp(\omega_F^i)}.$$

$$\boldsymbol{\alpha}_t = [\alpha_T^i]$$

Experimental Results

Di	Mai	LO	DIVI	LINIE	01 1 1	CONT	INDI CON	CAT	DEMON	NC II	414 001
Datasets	Metrics	L/C	DeepWalk	LINE	Chebyshev	GCN	KNN-GCN	GAT	DEMO-Net	MixHop	AM-GCN
Citeseer		20	43.47	32.71	69.80	70.30	61.35	72.50	69.50	71.40	73.30
	ACC	40	45.15	33.32	71.64	73.10	61.54	73.04	70.44	71.48	74.70
		60	48.86	35.39	73.26	74.48	62.38	74.76	71.86	72.16	75.56
		20	38.09	31.75	65.92	67.50	58.86	68.14	67.84	66.96	69.22
	F1	40	43.18	32.42	68.31	69.70	59.33	69.58	66.97	67.40	69.81
		60	48.01	34.37	70.31	71.24	60.07	71.60	68.22	69.31	70.92
UAI2010	ACC	20	42.02	43.47	50.02	49.88	66.06	56.92	23.45	61.56	70.46
		40	51.26	45.37	58.18	51.80	68.74	63.74	30.29	65.05	73.14
		60	54.37	51.05	59.82	54.40	71.64	68.44	34.11	67.66	74.40
	F1	20	32.93	37.01	33.65	32.86	52.43	39.61	16.82	49.19	55.61
		40	46.01	39.62	38.80	33.80	54.45	45.08	26.36	53.86	64.88
		60	44.43	43.76	40.60	34.12	54.78	48.97	29.05	56.31	65.99
ACM	ACC	20	62.69	41.28	75.24	87.80	78.52	87.36	84.48	81.08	90.70
		40	63.00	45.83	81.64	89.06	81.66	88.60	85.70	82.34	90.76
		60	67.03	50.41	85.43	90.54	82.00	90.40	86.55	83.09	91.42
	F1	20	62.11	40.12	74.86	87.82	78.14	87.44	84.16	81.40	90.63
		40	61.88	45.79	81.26	89.00	81.53	88.55	84.83	81.13	90.66
		60	66.99	49.92	85.26	90.49	81.95	90.39	84.05	82.24	91.36

Permutation-equivariance of GNNs

- Permutation-equivariance property
 - If we randomly permute the IDs of nodes while maintaining the graph structure, the representations of nodes in GNNs should be permuted accordingly
- Pros:
 - Guarantees that the embeddings of automorphic nodes are identical
 - Automatically generalize to all the O(N!) permutations when training with only one permutation
- Most of the existing message-passing GNNs satisfy permutation-equivariance

Permutation-equivariant Node Embeddings

Permutation-equivariance vs. Proximity-aware

However, permutation-equivariance and proximity-aware are conflicting

On the Equivalence between Positional Node Embeddings and Structural Graph Representations. ICLR 2020.

Unique Node Identifiers

The key problem is that nodes cannot differentiate each other

Theoretical analysis: unique node identifiers are one necessary condition for GNNs to be universal approximation

What graph neural networks cannot learn depth vs width, ICLR 2020
Stochastic Message Passing (SMP)

- Assign stochastic features as node identifiers
 - Gaussian features: associate with random projection literature
- A dual GNN architecture:

Ziwei Zhang, Chenhao Niu, Peng Cui, et al. A Simple and General Graph Neural Network with Stochastic Message Passing. arXiv, 2009.02562.

Theoretical Guarantee

SMP can preserve node proximities

Theorem 2. An SMP in Eq. (9) with the message-passing matrix $\tilde{\mathbf{A}}$ and the number of propagation steps K can preserve the walk-based proximity $\tilde{\mathbf{A}}^{K}(\tilde{\mathbf{A}}^{K})^{T}$ with high probability if the dimensionality of the stochastic matrix d is sufficiently large, where the superscript T denotes matrix transpose. The theorem is regardless of whether \mathbf{E} are fixed or resampled.

SMP can recover the existing permutation-equivariant GNNs

Corollary 2. For any task, Eq. (8) with the aforementioned linear $\mathcal{F}_{output}(\cdot)$ is at least as powerful as the permutation-equivariant $\mathcal{F}_{GNN'}(\mathbf{A}, \mathbf{F}; \mathbf{W'})$, i.e., the minimum training loss of using \mathbf{H} in Eq. (8) is equal to or smaller than using $\mathbf{H}^{(L)} = \mathcal{F}_{GNN'}(\mathbf{A}, \mathbf{F}; \mathbf{W'})$.

An adaptive GNN that maintains both proximity-awareness and permutation-equivariance

Ziwei Zhang, Chenhao Niu, Peng Cui, et al. A Simple and General Graph Neural Network with Stochastic Message Passing. arXiv, 2009.02562.

Experimental Results

Table 2: The results of link prediction tasks measured in AUC (%). The best results and the second-best results for each dataset, respectively, are in bold and underlined.

Model	Grid	Communities	Email	CS	Physics	PPI
SGC GCN GAT	$57.6 \pm 3.8 \\ 61.8 \pm 3.6 \\ 61.0 \pm 5.5$	51.9 ± 1.6 50.3 ± 2.5 51.1 ± 1.6	68.5 ± 7.0 67.4 ± 6.9 53.5 ± 6.3	$\frac{96.5 \pm 0.1}{93.4 \pm 0.3}$ 93.7 \pm 0.9	96.6±0.1 93.8±0.2 94.1±0.4	80.5 ± 0.4 78.0 \pm 0.4 79.3 \pm 0.5
PGNN ⁵	<u>73.4±6.0</u>	<u>97.8±0.6</u>	70.9±6.4	82.2±0.5	Out of memory	80.8±0.4
SMP-Identity SMP-Linear	55.1±4.8 73.6±6.2	98.0±0.7 97.7±0.5	$\frac{72.9\pm5.1}{75.7\pm5.0}$	<u>96.5±0.1</u> 96.7±0.1	$\frac{96.5\pm0.1}{96.1\pm0.1}$	$\frac{81.0\pm0.2}{81.9\pm0.3}$

Superior performance when the task is proximity-related

Table 3: The results of node classification tasks measured by accuracy (%). The best results and the second-best results for each dataset, respectively, are in bold and underlined.

Model	Communities	CS	Physics	Cora	CiteSeer	PubMed
SGC GCN GAT	$\begin{array}{c c} 7.1 \pm 2.1 \\ \hline 7.5 \pm 1.2 \\ \hline 5.0 \pm 0.0 \end{array}$	$\begin{array}{r} 67.2 \pm 12.8 \\ \underline{91.1 \pm 0.7} \\ 90.5 \pm 0.5 \end{array}$	92.3 \pm 1.6 93.1 \pm 0.8 93.1 \pm 0.4	$76.9 \pm 0.2 \\ \underline{81.4 \pm 0.5} \\ 82.9 \pm 0.5$	63.6±0.0 71.3±0.5 71.2±0.6	74.2±0.1 79.3±0.4 77.9±0.5
PGNN	5.2±0.5	77.6±7.6	Out of memory	59.2±1.5	55.7±0.9	Out of memory
SMP-Linear	99.9±0.3	91.5±0.8	<u>93.1±0.8</u>	80.9±0.8	68.2±1.0	76.5 ± 0.8

Comparable performance when permutation-equivariant is helpful

Ziwei Zhang, Chenhao Niu, Peng Cui, et al. A Simple and General Graph Neural Network with Stochastic Message Passing. arXiv, 2009.02562.

Outline

- **Does GNN fuse** *feature* and *topology* optimally?
- □ Is GNN really a *deep* model?
- Technical challenges in real applications: robustness, explainability and applicability

Is GNN really a deep model?

□ Though GNNs are motivated as "deep learning", most models only adopt 2-3 layers

Difficulties in training deep networks, e.g., over-fitting, vanishing gradients

Over-smoothing, i.e. all nodes have similar representations in deeper layers

Semi-Supervised Classification with Graph Convolutional Networks, *ICLR 2017.* Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning, *AAAI 2018.* Graph Neural Networks Exponentially Lose Expressive Power for Node Classification, *ICLR 2020.*

Is GNN really a deep model?

□ State-of-the-art CNNs can have hundreds of layers, e.g., ResNet, DenseNet

□ Can we mimic them and use similar ideas to develop GNNs?

Residual connections, dense connections, and dilated aggregation

Method	OA	mIOU
PointNet [27]	78.5	47.6
MS+CU [8]	79.2	47.8
G+RCU [8]	81.1	49.7
PointNet++ [29]	-	53.2
3DRNN+CF [48]	86.9	56.3
DGCNN [42]	84.1	56.1
ResGCN-28 (Ours)	85.9	60.0

DeepGCNs: Can GCNs Go as Deep as CNNs? ICCV 2019

More Recent Approaches

Design specific dropout to graph data

 \rightarrow Randomly drop edges in each epoch

□ Theoretical insights:

- A data augmentation technique
- A message passing reducer

DropEdge: Towards Deep Graph Convolutional Networks on Node Classification, *ICLR 2020*

- How to prevent node embedding from being similar?
- → Make total pairwise feature distances remained a constant across layers

PairNorm: Tackling Oversmoothing in GNNs, ICLR 2020

A Hot Research Topic

□ How to train real deep GNNs is still an on-going research topic

- DeepGCNs, DropEdge, PairNorm
- Many more:
 - Measuring and Relieving the Over-smoothing Problem for Graph Neural Networks from the Topological View, AAAI 2020
 - □ Towards Deeper Graph Neural Networks, *KDD 2020*
 - □ What graph neural networks cannot learn: depth vs width, ICLR 2020
 - □ Simple and deep GNN, *ICML 2020*
 - □ Bayesian Graph Neural Networks with Adaptive Connection Sampling, ICML 2020
 - An Anatomy of Graph Neural Networks Going Deep via the Lens of Mutual Information: Exponential Decay vs. Full Preservation, arXiv 1910.04499
 - □ Revisiting Oversmoothing in Deep GCNs, arXiv 2003.13663
 - □ Towards Deeper Graph Neural Networks with Differentiable Group Normalization, *arXiv* 2006.06972
 - DeeperGCN: All You Need to Train Deeper GCNs, arXiv 2006.07739
 - Effective Training Strategies for Deep Graph Neural Networks, arXiv 2006.07107
 - Graphs, Entities, and Step Mixture, arXiv 2005.08485

Cautious: whether and when GNNs need to go deep?

□ Cautious: whether and when do we need deep GNNs?

□ A wider neighborhood structure? The extra non-linearity?

Recall Simplified GCN^[1] formulation:

$$H^{(k+1)} = SH^{(k)}W^{(k)},$$
$$\hat{Y} = softmax \left(S^{K}H^{(0)}W\right)$$

High-order proximity

□ There are also recent theoretical results^[2]:

problem	bound	problem	bound
cycle detection (odd)	$dw = \Omega(n/{\log n})$	shortest path	$d\sqrt{w} = \Omega(\sqrt{n}/\log n)$
cycle detection (even)	$dw = \Omega(\sqrt{n}/{\log n})$	max. indep. set	$dw = \Omega(n^2/\log^2 n)$ for $w = O(1)$
subgraph verification*	$d\sqrt{w} = \Omega(\sqrt{n}/\log n)$	min. vertex cover	$dw = \Omega(n^2/\log^2 n)$ for $w = O(1)$
min. spanning tree	$d\sqrt{w} = \Omega(\sqrt{n}/\log n)$	perfect coloring	$dw = \Omega(n^2/\log^2 n)$ for $w = O(1)$
min. cut	$d\sqrt{w} = \Omega(\sqrt{n}/\log n)$	girth 2-approx.	$dw = \Omega(\sqrt{n}/\log n)$
diam. computation	$dw = \Omega(n/{\log n})$	diam. ³ /2-approx.	$dw = \Omega(\sqrt{n}/{\log n})$

Simplifying graph convolutional networks, *ICML 2019* What graph neural networks cannot learn depth vs width, *ICLR 2020*

Outline

- **Does GNN fuse** *feature* and *topology* optimally?
- □ Is GNN really a *deep* model?
- Technical challenges in real applications: robustness, explainability and applicability

Technical challenges in real applications

Hot directions in computer vision:

Robustness in GNNs

Adversarial attacks

- Small perturbations in graph structures and node attributes
- □ Great challenges for applying GNNs to node classification

Adversarial Attacks on Neural Networks for Graph Data, KDD 2018

Adversarial Attacks on GNNs

Categories

□ Targeted vs. Non-targeted

□ Targeted: the attacker focus on misclassifying some target nodes

■ Non-targeted: the attacker aims to reduce the overall model performance

- Direct vs. Influence
 - Direct: the attacker can directly manipulate the edges/features of the target nodes
 - □ Influence: the attacker can only manipulate other nodes except the targets
- □ Attacker knowledge:

Settings	Parameters	Predictions	Labels	Training Input
White-Box Attack (WBA)	\	√	\checkmark	\
Practical White-box Attack (PWA)		~	\checkmark	\
Restrict Black-box Attack (RBA)				<i>✓</i>

GF-Attack: Restrict Black-box Attack for Graphs

- Understand the various graph embedding model from a new general Graph Signal Processing (GSP) perspective.
- An adversarial framework, GF-Attack, is proposed accordingly to perform attacks though graph filters in a RBA fashion.

Heng Chang, Yu Rong, Tingyang Xu, Wenbing Huang, Honglei Zhang, Peng Cui, Wenwu Zhu, Junzhou Huang A Restricted Black-box Adversarial Framework Towards Attacking Graph Embedding Models. *AAAI, 2020.*

GF-Attack: Restrict Black-box Attack for Graphs

□ Core idea: constructing the attack damage measuring by attacking the graph filter \mathcal{H} □ Measuring the quality of output embedding *Z* as the *T*-rank approximation problem:

Equivalent to optimize:

$$\mathscr{L}(A', Z) = \|h(S')X - h(S')_T X\|_F^2$$

arg max
{A'} $\sum{i=T+1}^n {\lambda'_i}^2 \cdot \sum_{i=T+1}^n \|\mathbf{u}_i^T X\|_2^2$,
s.t. $\|A' - A\| = 2\beta$.

 λ_i and \boldsymbol{u}_i are an eigenpair of graph filter \mathcal{H} .

□ GCN/SGC as Example: rewrite the GCN/SGC with $S = 2I_n - L^{sym}$: $\tilde{X} = (2I_n - L^{sym})^K X$, $X' = \sigma(\tilde{X}\Theta), L^{sym} = I_n - D^{-\frac{1}{2}}AD^{-\frac{1}{2}} = I_n - \hat{A}$

\Box The corresponding adversarial attack loss for K_{th} order GCN/SGC is constructed as:

$$\arg\max_{A'} \sum_{i=T+1}^{n} (\lambda'_{\hat{A'},i} + 1)^{2K} \cdot \sum_{i=T+1}^{n} \|\mathbf{u}_{\hat{A'},i}^{T}X\|_{2}^{2}$$

A linear time approximation via eigenvalue perturbation theory is used

Heng Chang, Yu Rong, Tingyang Xu, Wenbing Huang, Honglei Zhang, Peng Cui, Wenwu Zhu, Junzhou Huang A Restricted Black-box Adversarial Framework Towards Attacking Graph Embedding Models. *AAAI, 2020.*

Robust Graph Convolutional Networks

How to enhance the robustness of GNNs against adversarial attacks?

Adversarial attacks in node classification

Connect nodes from different communities to confuse the classifier

Distribution vs. plain vectors

- Plain vectors cannot adapt to such changes
- Variances can help to absorb the effects of adversarial changes
- \square Gaussian distributions \rightarrow Hidden representations of nodes

Dingyuan Zhu, Ziwei Zhang, Peng Cui, Wenwu Zhu. Robust Graph Convolutional Networks Against Adversarial Attacks. *KDD*, 2019.

The Framework of RGCN

Dingyuan Zhu, Ziwei Zhang, Peng Cui, Wenwu Zhu. Robust Graph Convolutional Networks Against Adversarial Attacks. *KDD*, 2019.

Experimental Results

Node Classification on Clean Datasets

	Cora	Citeseer	Pubmed
GCN	81.5	70.9	79.0
GAT	83.0	72.5	79.0
RGCN	83.1	71.3	79.2

Against Non-targeted Adversarial Attacks

Figure 2: Results of different methods when adopting Random Attack as the attack method.

Dingyuan Zhu, Ziwei Zhang, Peng Cui, Wenwu Zhu. Robust Graph Convolutional Networks Against Adversarial Attacks. *KDD*, 2019.

Interpretability of GNNs

□ A real-world graph is typically formed due to *many* latent factors.

Existing GNNs/GCNs:

A holistic approach, that takes in the whole neighborhood to produce a single node representation

□ We suggest:

□ To disentangle the latent factors

(By segmenting the heterogeneous parts, and learning multiple factor-specific representations for a node)

Robustness (e.g., not overreact to an irrelevant factor)
 & Interpretability

Disentangled Representation Learning

□ That is, we aim to learn disentangled node representations

□ A representation that contains independent components, that describes different aspects (caused by different latent factors) of the observation

The topic is well studied in the field of computer vision

But largely unexplored in the literature of GNNs. (a) Skin colour

(b) Age/gender

(c) Image saturation

Example: Three dimensions that are related skin color, age/gender, and saturation, respectively.

Method Overview

□ We present DisenGCN, the *disentangled* graph convolutional network

- □ DisenConv, a disentangled multichannel convolutional layer (figure below)
- Each channel convolutes features related with a single latent factor

Results: Multi-label Classification

Figure 2. Macro-F1 and Micro-F1 scores on the multi-label classification tasks. Our approach consistently outperforms the best performing baselines by a large margin, reaching 10% to 20% relative improvement in most cases.

Results: On Synthetic Graphs

Table 3. Micro-F1 scores on synthetic graphs generated with different numbers of latent factors.

	Number of latent factors						
Method	4	6	8	10	12	14	16
GCN	78.78 ± 1.52	65.73 ± 1.94	46.55 ± 1.55	37.37 ± 1.52	24.49 ± 1.03	18.14 ± 1.50	16.43 ± 0.92
GAT	83.77 ± 2.32	60.89 ± 3.75	45.88 ± 3.79	36.72 ± 3.58	24.77 ± 3.47	20.89 ± 3.57	19.53 ± 3.97
DisenGCN (this work)	$\textbf{93.84} \pm 1.12$	$\textbf{74.68} \pm 1.92$	$\textbf{54.57} \pm 1.79$	$\textbf{43.96} \pm 1.45$	$\textbf{28.17} \pm 1.22$	$\textbf{23.57} \pm 1.28$	$\textbf{21.99} \pm 1.34$
Relative improvement	+12.02%	+13.62%	+17.23%	+17.63%	+13.73%	+12.83%	+12.6%

□ Improvement is larger when #factors is relatively large (around 8)

Results: Correlations between the Neurons

Applicability of GNNs/Network embedding

Various network properties

Community Detection
 Node Classification

Network Distance

Link Prediction

□ Node Importance

Various applications

Leading to a large number of hyper-parameters
 Must be carefully tuned

AutoML

- Ease the adoption of machine learning and reduce the reliance on human experts
 - E.g., hyper-parameter optimization, neural architecture search
- Largely unexplored on graph/network data

Large-scale issue:

- **Complexity of GNNs/Network Embedding is usually at least** O(E)
 - **□** E is the number of edges (can be 10 billion)
- **\Box** Total complexity: O(ET), T is the times searching for optimal hyperparameters

How to incorporate AutoML into massive GNNs efficiently?

AutoML for GNN/Network embedding

□ A straightforward way: configuration selection on sampled sub-networks

Transferability

 $\Box \theta \neq$ optimal configuration on the origin network

□ Heterogeneity

□ Several highly heterogeneous components → needs carefully designed sampling

Ke Tu, Jianxin Ma, Peng Cui, Jian Pei, Wenwu Zhu. AutoNE: Hyperparameter Optimization for Massive Network Embedding. *KDD*, 2019.

AutoNE

Transfer the knowledge about optimal hyperparameters from the sub-networks to the original massive network

Ke Tu, Jianxin Ma, Peng Cui, Jian Pei, Wenwu Zhu. AutoNE: Hyperparameter Optimization for Massive Network Embedding. *KDD*, 2019.

Experiments: Sampling-Based NE

The performance achieved within various time thresholds.

The number of trials to reach a certain performance threshold

Ke Tu, Jianxin Ma, Peng Cui, Jian Pei, Wenwu Zhu. AutoNE: Hyperparameter Optimization for Massive Network Embedding. *KDD*, 2019.

Recap: Graph Neural Networks

- Message-passing framework of GNNs
 Frontiers:
 - Does GNN fuse *feature* and *topology* optimally?
 - Is GNN really a *deep* model?
 - Technical challenges in real applications: robustness, explainability and applicability

Summaries and Conclusions

- Unsupervised vs. (Semi-)Supervised
- Learning for Networks vs. Learning via Graphs
- Topology-driven vs. Feature-driven

Both GNN and NE need to treat the counterpart as the baselines

A Survey on Network Embedding

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

A Survey on Network Embedding

Issue No. 01 - (preprint vol.) ISSN: 1041-4347 pp: 1 DOI Bookmark: http://doi.ieeecomputersociety.org/10.1109/TKDE.2018.2849727

Peng Cui, Computer Science Department, Tsinghua University, Beijing, Beijing China (e-mail: cuip@tsinghua.edu.cn) Xiao Wang, Computer Science, Tsinghua University, Beijing, Beijing China (e-mail: wangxiao007@mail.tsinghua.edu.cn) Jian Pei, School of Computing Science, Simon Fraser University, Burnaby, British Columbia Canada (e-mail: jpei@cs.sfu.ca) Wenwu Zhu, Department of Computer Science, Tsinghua University, Beijing, Beijing, Beijing China (e-mail: wwzhu@tsinghua.edu.cn)

ABSTRACT

Network embedding assigns nodes in a network to low-dimensional representations and effectively preserves the network structure. Recently, a significant amount of progresses have been made toward this emerging network analysis paradigm. In this survey, we focus on categorizing and then reviewing the current development on network embedding methods, and point out its future research directions. We first summarize the motivation of network embedding. We discuss the classical graph embedding algorithms and their relationship with network embedding. Afterwards and primarily, we provide a comprehensive overview of a large number of network embedding methods in a systematic manner, covering the structure- and property-preserving network embedding methods, the network embedding methods with side information and the advanced information preserving network embedding methods. Moreover, several evaluation approaches for network embedding and some useful online resources, including the network data sets and softwares, are reviewed, too. Finally, we discuss the framework of exploiting these network embedding methods to build an effective system and point out some potential future directions.

Peng Cui, Xiao Wang, Jian Pei, Wenwu Zhu. A Survey on Network Embedding. IEEE TKDE, 2018.

Deep Learning on Graphs: A Survey

Journals & Magazines > IEEE Transactions on Knowledg > Early Access 🕜							
Deep Lear	ning on Graph	ns: A Survey					
Publisher: IEEE	Cite This	💪 PDF					
Ziwei Zhang ; Pen	g Cui ; Wenwu Zhu 🛛 🗚 🖌	Authors					
3 150 Paper Citations	08 t Views		R	\succ	©	₫	4
Abstract	Abstract:						
Authors	Deep learnin images, to na	g has been shown to be succe atural language processing. H	essful in a number of doma owever, applying deep lear	ning to t	the ubiq	i acousti uitous gi	cs, raph
Citations	data is non-t efforts have l	rivial because of the unique c been devoted to applying dee	naracteristics of graphs. Re ep learning methods to gra	cently, si phs, resu	libstantia Ilting in	ai researd beneficia	cn al
Keywords	types of deep	graph analysis techniques. In t p learning methods on graph:	this survey, we comprehens s. We divide the existing me	ethods ir	nto five o	anterent ategorie	es

Published in: IEEE Transactions on Knowledge and Data Engineering (Early Access)

based on their model architectures and training strategies: graph recurrent neural networks, graph convolutional networks, graph autoencoders, graph reinforcement learning, and graph adversarial

methods. We then provide a comprehensive overview of these methods in a systematic manner mainly by following their development history. We also analyze the differences and compositions

of different methods. Finally, we briefly outline the applications in which they have been used and

Ziwei Zhang, Peng Cui, Wenwu Zhu. Deep Learning on Graphs: A Survey. IEEE TKDE, 2020.

discuss potential future research directions.

Metrics

Media

Thanks!

Peng Cui cuip@tsinghua.edu.cn http://pengcui.thumedialab.com