Frontiers in GNN and Network Embedding

Peng Cui, Ziwel Zhang
Tsinghua University



Network (Graph)

The general description of data and their relations.




Many types of data are networks

Social Networks Biology Networks Finance Networks
Internet of Things Information Networks Logistic Networks
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Graphs in NLP

Syntactic Dependency

Abstract Meaning Representation
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Word Co-occurrences

Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling, EMNLP 2017
Large-Scale Hierarchical Text Classification with Recursively Regularized Deep Graph-CNN, WWW 2018
A Graph-to-Sequence Model for AMR-to-Text Generation, ACL 2018



Knowledge Graph

https://yashuseth.blog/2019/10/08/introduction-question-answering-knowledge-graphs-kgga/
Building and Querying an Enterprise Knowledge Graph, TSC 2019



e
NLP + Computer Vision

Scene Graph Visual Question Answering

Neural Motifs: Scene Graph Parsing with Global Context, CVPR 2018
Aligned Dual Channel Graph Convolutional Network for Visual Question Answering, ACL 2020



Why network is important?

In few cases, you only care about a subject but not its
relations with other subjects.

Image Characterization Social Capital
= Target
X 9

Target

Reflected by relational subjects Decided by relational subjects



5

Many applications are intrinsically network problems

Recommendation Systems

Link prediction in
bipartite graphs

tern-similarity

friendship
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friendship



Many applications are intrinsically network problems

Financial credit & risk management Node importance & classification

COLLATERAL




Many applications are intrinsically network problems

Subgraph pattern discovery

New material discovery

Materials discovery engine concept
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Graph as a data model

o The last resort for the curse of complexity in real applications

0 Geographical networks, relationships, etc.

o Divide-and-conguer in modeling
O Individual nodes and edges are well structured

0 Global structures are weakly organized



Networks are not /earning-friendly

Pipeline for network analysis

G=(V,E)
Network
Inapplicability of bata
ML methods l
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Learning from networks

Network

Embedding
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Gra ph Neural network VS. Network embedding

1 In some sense, they are different
1 Graphs exist in mathematics (Data Structure)
1 Mathematical structures used to model pairwise relations between objects
1 Networks exist in the real world (Data)
1 Social networks, logistic networks, biology networks, transaction networks, etc.
A network can be represented by a graph
A dataset that is not a network can also be represented by a graph



GNN for Natural Language Processing

0 Many papers on BERT + GNN.

0 BERT is for retrieval.

O It creates an initial graph of relevant
entities and the initial evidence.

0 GNN Is for reasoning.

O It collects evidence (i.e., old
messages on the entities) and arrive
at new conclusions (i.e., new
messages on the entities), by passing
the messages around and
aggregating them.

Cognitive Graph for Multi-Hop Reading Comprehension at Scale. Ding et al., ACL 2019.
Dynamically Fused Graph Network for Multi-hop Reasoning. Xiao et al., ACL 20109.



GNN for Computer Vision

0 A popular trend in CV Is to construct a graph during the learning process
[0 To process multiple objects or parts in a scene, and to infer their relationships

0 Example: Scene graphs

Scene Graph Generation by lterative Message Passing. Xu et al., CVPR 2017.
Image Generation from Scene Graphs. Johnson et al., CVPR 2018.



GNN for Symbolic Reasoning

[0 We can view the process of symbolic reasoning as a directed acyclic graph
0 Many recent efforts use GNNs to perform symbolic reasoning

Learning by Abstraction: The Neural State Machine. Hudson & Manning, NeurlPS 2019
Can Graph Neural Networks Help Logic Reasoning? Zhang et al., arXiv 1906.02111
Symbolic Graph Reasoning Meets Convolutions. Liang et al., NeurlPS 2018



GNN for Structural Equation Modeling

0 Structural equation modeling, a form of causal modeling, tries to describe the
relationships between the variables as a directed acyclic graph (DAG)

0 GNN can be used to represent a nonlinear structural equation and help find
the DAG, after treating the adjacency matrix as parameters

DAG-GNN: DAG Structure Learning with Graph Neural Networks. Yu et al., ICML 2019



Pipeline for (most) GNN works

Sl End task

Raw Data Construction




Network embedding: topology to vector

0 Co-occurrence (neighborhood)

Book Translations




Network embedding: topology to vector

0 High-order proximities



Network embedding: topology to vector

O Communities

NIRX
" "l
y »

.l \..‘
§:

as
4 B/

‘« o
20 AN 3
= '4‘3;.4’9%'@\

..

j
W
S




Network embedding: topology to vector

[0 Heterogeneous networks



Pipeline for (most) Network Embedding works

Network Network Downstream End task

Data Embedding Model
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Learning for Networks vs. Learning via Graphs

1

Learning via Graphs

Network
Embedding

»

Learning for Networks



The intrinsic problems NE is solving

Reducing representation dimensionality while preserving necessary
topological structures and properties.

Nodes & Links ansitivity

Node Neighborhood

Pair-wise Proximity Pncertainty

Community Dynamic

Hyper Edges Heterogeneity

Global Structure Interpretability




The intrinsic problem GNN is solving

Fusing topology and features in the way of smoothing features with
the assistance of topology.




Network Embedding vs. GNN

There is no better one, but there is more proper one.

Network Feature-based
Embedding Learning

Node
Features

Topology



Learning from networks

Network

Embedding




Network Embedding

G:(V)

Vector Space
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0 Easy to parallel

o Can apply classical ML methods



The ultimate goal

n
>

Network Inference
. Node importance
BT e Community detection
H o Network distance
i e Link prediction
LR Node classification

Network evolution

In Vector Space



The goal of network embedding

[ Goal Support network inference in vector space ]
Reflect network Maintain network
structure properties

@

Transitivity
Transform network nodes into vectors that are fit for

off-the-shelf machine learning models



Outline

. Structure-preserved network embedding
. Property-preserved network embedding

. Dynamic network embedding



Outline

. Structure-preserved network embedding
. Property-preserved network embedding

. Dynamic network embedding



Network Structures

Nodes & Links
b
Pair-wise Proximity
).

Community Structures

).
Hyper Edges

&

Global Structure




High-Order Proximity

1 Capturing the underlying structure of networks

1 Advantages:

1 Solve the sparsity problem of network connections
1 Measure indirect relationship between nodes



DeepWalk

1 Exploit truncated random walks to define neighborhoods of a node.

Random Walks on Graph
V26 _ V25 - V32 - V3 _ VlO---
Ve =V —Vig — Vo — Viq ...
V31 _ V33 - V21 - V33 - V15

B. Perozzi et al. Deepwalk: Online learning of social representations. KDD 2014.



LINE with First-order Proximity:
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LINE with Second-order Proximity:
neighborhood structures

Oy = Z Aid(p2(-|vi), p2(-|vi))

1cV

Jian Tang et al. LINE: Large-scale Information Network Embedding. WWW 2015,



SDNE - Structural Deep Network Embedding

Unsupervised Autoencoder Unsupervised Autoencoder
(preserve second-order proximity) (preserve second-order proximity)

Daixin Wang et al. Structural Deep Network Embedding. KDD, 2016.



GraRep

capturing
different
k-step
information

1-step 2-step 3-step 4-step

maintaining
different
k-step
information
separately

Do not distinguish 1-step and 2-step

Shaosheng Cao et al. GraRep: Learning Graph Representations with Global Structural Information. CIKM 2015.



What is the right order?

] Different networks/tasks require different high-order proximities
1 E.g., multi-scale classification (Bryan Perozzi, et al, 2017)

] E.g., networks with different scales and sparsity

1 Proximities of different orders can also be arbitrarily weighted
1 E.g., equal weights, exponentially decayed weights (Katz)



What is the right order?

] Existing methods can only preserve one fixed high-order proximity
1 Different high-order proximities are calculated separately

Proximityl
Proximity2 / Proximity3 Proximity4

Time consuming!

Embeddingl  Embedding2 Embedding3 Embedding4

— How to preserve arbitrary-order proximity while guaranteeing accuracy and efficiency?



Problem Formulation

1 High-order proximity: a polynomial function of the adjacency matrix
S =f(4) = wi A" + wp A% 4 -+ w, A1
[l q: order; wy...w,: weights, assuming to be non-negative
1 A: could be replaced by other variations (such as the Laplacian matrix)
1 Objective function: matrix factorization
S — U*V*T

min
u*v*
O U* V* e RV*2: |eft/right embedding vectors

1 d: dimensionality of the space

1 Optimal solution: Singular Value Decomposition (SVD)
O [U,X,V]: top-d SVD results
U*=UVr, V*=VV2

|2
F

Ziwei Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018.



Eigen-decomposition Reweighting
1 Eigen-decomposition reweighting

THEOREM 4.2 (EIGEN-DECOMPOSITION REWEIGHTING). If|[A, x|
is an eigen-pair of A, then |¥ (A), x| is an eigen-pair of S = F(A).

Efficient!
Eigen-decomposition

A AllX

Time Consuming! [ Polynomial F(+) Efficient!lPolynomial F()

S Eigen-decompositign FM| | X

Time Consuming!

1 Insights: high-order proximity is simply re-weighting dimensions!

U* =UVL,V* =VVX
Ziwei Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018.



Preserving Arbitrary-Order Proximity

[l Shifting across different orders/weights:

Shifting Embeddingl
Embedding2
Eigen-decomposition 4 J
i A X
? Embedding3
. Embedding4
Efficient!

1 Preserving arbitrary-order proximity
1 Low marginal cost
1 Accurate and efficient

Ziwei Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018.



Experimental Results

1 Link Prediction

+100%‘ +200cy1

Ziwei Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018.



Billion-Scale Networks

[l Existing network embeddings (e.g., AROPE) can handle million-scale networks
] But real graphs can have billions of nodes and edges
] Social Networks

1 WeChat: 1 billion monthly active users (March, 2018)
[l Facebook: 2 billion active users (2017)

[0 E-commerce Networks
1 Amazon: 353 million products, 310 million users, 5 billion orders (2017)
] Citation Networks
1 130 million authors, 233 million publications, 754 million citations (Aminer, 2018)

How to scale embedding methods to billion-scale networks?




Random Projection for Matrix Factorization

1 Objective function: matrix factorization of preserving high-order proximity
rlr]{;/nIIS —Uv'|3
S=f(4) = 1A' + a, A% + -+ a AT
1 Essentially a dimensionality reduction problem

] Random projection: optimization-free for dimensionality reduction
[l Basic idea: randomly project data into a low-dimensional subspace
1 Extremely efficient and friendly to distributed computing
[0 Denote R € RV*4 as a Gaussian random matrix

1
Ry~ (0.~

U=3SR

1 Surprisingly simple result:

Ziwei Zhang, et al. Billion-scale Network Embedding with Iterative Random Projection. ICDM, 2018.



Theoretical Guarantee

Slight modification: assuming positive semi-definite and using 2-norm
Hll]in”SST - UUT“z
S=f(A4) = 1A' + @, A% + -+ a A1
Theoretical guarantee

Theorem 1. For any similarity matrix S, denote its rank as
rs. Then, for any € & (O, %), the following equation holds:

(62—63)d
P[HS-ST—U-UTH ><—:HST-SH]§2’PS€_ 4 :
2 2

where U =S - R and R is a Gaussian random matrix.

Basically, random projection can effectively minimize the objective function
However, calculating S is still very time consuming

Ziwei Zhang, et al. Billion-scale Network Embedding with Iterative Random Projection. ICDM, 2018.



RandNE: Iterative Projection

] Iterative projection: can be calculated iteratively
U=SR= (A" + a,A* + -+ a,A7)R

= afA'RH aJA’R H -+ aqEqR

LI Why efficient? XA XA XA Time Consuming!
1 A: N X N sparse adjacency matrix
0 R: N X d low-dimensional matrix x A x A % A
.. : . : A1 —_— AZ —_— . ——p A4
1 Associative law of matrix multiplication

Sparse
AA ... A +«—— Low-dimensional \ X R x R
— Sparse
«— Low-dimensional
AA ...AA(Ag) » .
parse Ul — U2 — 18— UCI

Low-dimensional

AA ...|A(AAR)
Sparse matrix multiplication!

Ziwei Zhang, et al. Billion-scale Network Embedding with Iterative Random Projection. ICDM, 2018.



Distributed Calculation

1 Iterative random projection only involves matrix multiplication U; = AU;_4

1 Each dimension can be calculated separately
1 Property of sparse matrix multiplication
1 No communication is needed during calculation!

\i |

N

U e ]RNXd
Ziwei Zhang, et al. Billion-scale Network Embedding with Iterative Random Projection. ICDM, 2018.



Experimental Results

Running time O Link Prediction
16406 AUC SCORES OF LINK PREDICTION.
=7
ey Dataset BlogCatalog | Flickr | Youtube
% 1e+041 / =@= RandNE RandNE 0.944 0.940 0.887
E N DeepWalk DeepWalk 0.760 0.938 0.909
o e LINE LINE 0.667 0.909 | 0.847
€ 1e+02; 27X Node2vec ~ LINEs, 0.762 0.932 | 0.959
5. J2sx =y=SONE Node2vec 0.650 0865 | 0.778
V SDNE 0.940 0.926 :
1e+00+
BIogC'atang Flickr Youtube
Dataset
At least dozens of times faster Superior or comparable performance

Ziwei Zhang, et al. Billion-scale Network Embedding with Iterative Random Projection. ICDM, 2018.



Section Summary
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Nodes & Links

¢

Pair-wise Proximity Network
‘ Characteristics

Community Structures —

¢

Hyper Edges

¢

Global Structure

Application
Characteristics
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Outline

. Structure-preserved network embedding
. Property-preserved network embedding

. Dynamic network embedding



Why preserve network properties?

Heterogeneity




Transitivity

The Transitivity Phenomenon

Embedding Space

Network

Triangle Inequality: D(A,B) + D(B,C) > D(A4,C)

!

A close to B, B close to C — A relatively close to C

However, real network data is complex...



Non-transitivity
The Co-existence of Transitivity and Non-transitivity

Image network Social network
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How to incorporate non-transitivity in the embedding space?



Asymmetric Transitivity

: A—-B, B—- C==>A—C, butnotC —-A
Directed Network ’ ’
0.03 0.012
:50025_ | E 0.01}
3 2 -
.E 0.02f n FO rward .gu.uns-
né 0.015 ard | | % 0.006| 2 ;Z:::v:rd
2 0
001} 1 B 0.004]
: Backward ~g\m
0.005 . 50- L
Forward Transitive S | © 0\ ............
_________ b N:Jnmber 01102-hop p1;1]th b Number of 2-hop path
Backward Tencent Microblog Twitter

Transitive

Distance metric in the embedding space is symmetric.

How to incorporate Asymmetric Transitivity?



e
Non-transitivity

The source of non-transitivity:
Each node has multiple similarity components

Non-transitive
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Non-transitive Embedding: represent non-transitive data

with multiple latent similarity components

M. Ou, et al. Non-transitive Hashing with Latent Similarity Components. KDD, 2015.
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Single Vector
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" Double Vectors

Source  Target
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Asymmetric Transitivity

All existing methods fail..

Asymmetric fails

Transitivity fails

Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, Wenwu Zhu. Asymmetric Transitivity Preserving Graph Embedding. KDD, 2016.



Section Summary

0 Compared with network structures, network properties have a large

space to explore in network embedding
O Transitivity is important for network inference.
0 Uncertainty provides evidence in making network inference.

0 Many other property issues:

0 The right embedding space: Euclidean space?
0 Power-law distribution
O...



Outline

. Structure-preserved network embedding
. Property-preserved network embedding

. Dynamic network embedding



Dynamic Networks

1 Networks are dynamic in nature
0 New (old) nodes are added (deleted)
0 New users, products, etc.
[0 The edges between nodes evolve over time

] Users add or delete friends in social networks, or neurons establish new
connections in brain networks.

0 How to efficiently incorporate the dynamic changes when networks
evolve?



Key problems in dynamic network embedding

-1 . Out-of-sample nodes
-1l . Incremental edges
- lll: Aggregated error

- IV: Scalable optimization



L ——
Challenge: High-order Proximity

1 High-order proximity
O Critical structural property of networks

[0 Measure indirect relationship between nodes

0 Capture the structure of networks with
different scales and sparsity

Network Embedding vs. Traditional Graph Embedding




Challenge: High-order Proximity

| : Out-of-sample nodes
Il : Incremental edges
Ill: Aggregated error

IV: Scalable optimization

-

Preserve High-order Proximities

Local Change leads to Global Updating



e
Key problems in dynamic network embedding

- | . Out-of-sample nodes
-1l . Incremental edges
- lll: Aggregated error

- IV. Scalable optimization



e
Problem

0 To infer embeddings for out-of-sample nodes

G=(V, E) evolves into G'=(V’, E’), where V' =V U V*
n old nodes: V = {vq,...,v,,}, m new nodes: V* ={v,,11,...,Vnim}
Network embedding f:V —» R%

We know f (V) for old nodes, want to infer f (V") for new nodes.



Challenges

[0 Preserve network structures
O E.g., high-order proximity
0 Need to incorporate prior knowledge on networks
0 Share similar characteristics with in-sample embeddings
0 E.g. magnitude, mean, variance
0 Requires a model with great expressive power to fit the data well

0 Low computational cost

Jianxin Ma, et al. DepthLGP: Learning Embeddings of Out-of-Sample Nodes in Dynamic Networks. AAAI, 2018.



DepthLGP

0 Nonparametric probabilistic modeling + Deep Learning

Jianxin Ma, et al. DepthLGP: Learning Embeddings of Out-of-Sample Nodes in Dynamic Networks. AAAI, 2018.



DepthLGP

0 Design a kernel for the kth (k=1,...,s) dimension of h(-)
First-order Proximity Second-order Proximity

A
K, = [I—I-??kL(Ak)‘—I-CkL(AkAk)‘ j

A, £ diag(ay)A'diag(ay),

oy = [Ia(k)qag’;), calt T

vl 7 Un4+m

\
Node Weights

(to prune uninformative nodes)

1The matrix inversion can be bypassed without approximation.

2ak), indicates how much attention we pay to a node. It is learned for an in-
sample node, but fixed to one for an out-of-sample node, as we are always
Interested in out-of-sample nodes.




Experimental Results: Classification

Baselines This Work Upper Bound
Metric Embedding Network LocalAvg MRG LabelProp hLGP DepthLGP  (rerunning)

Macro-F1(%) LINE DBLP 37.89 4215 40.83 47.33 48.25 (49.07)
PPI 10.52 10.02 12.42 13.42 13.72 (13.91)
BlogCatalog 13.25 11.30 17.07 17.41 18.03 (18.90)
GraRep DBLP 50.61 55.79 55.02 57.43 58.67 (62.92)
PPI 13.65 13.75 12.38 14.80 14.84 (15.33)
BlogCatalog 14.76 14.80 14.71 15.94 18.45 (20.15)
node2vec DBLP 53.83 59.34 59.25 60.89 62.63 (64.87)
PPI 15.05 13.43 13.78 15.85 16.54 (16.81)
BlogCatalog 15.10 14.04 19.16 19.77 20.32 (20.82)
Micro-F1(%) LINE DBLP 49.58 50.49 50.88 54.01 54.94 (55.84)
PPI 18.10 15.71 18.81 20.71 21.42 (21.43)
BlogCatalog 27.40 23.21 30.79 31.36 31.90 (32.20)
GraRep DBLP 60.17 60.62 60.48 61.44 62.29 (65.44)
PPI 20.23 20.35 20.23 20.79 21.44 (21.88)
BlogCatalog 36.44 30.79 33.90 37.57 38.14 (38.37)
node2vec DBLP 60.54 62.29 62.52 62.83 64.56 (65.63)
PPI 19.70 18.25 18.25 22.63 23.11 (23.41)
BlogCatalog 34.83 25.82 36.94 37.96 39.64 (40.34)

Jianxin Ma, et al. DepthLGP: Learning Embeddings of Out-of-Sample Nodes in Dynamic Networks. AAAI, 2018.



Key problems in dynamic network embedding

-1 . Out-of-sample nodes
-1l . Incremental edges
- lll: Aggregated error

- IV: Scalable optimization



Problem: Error Accumulation
1 Eigen perturbation is at the cost of inducing approximation

Ao SV=,~D Uy |lo_ Vo
UUpdate;
A, ~ |V [3; A

| Error
UUpdate Accumulation!

U/l |3, V,

A

2

1 Problem: error accumulation iIs inevitable



Solution: SVD Restarts

1 Solution: restart SVD occasionally

Ag ‘2 Yo 20 Vo
U,Update
Al Ul, Zl’ Vl,

SVD V,
Restart A — Y |—Z“’
When?

A Ut+1’ Zt+1 Vt+1
t+1

1 What are the appropriate time points?

[0 Too early restarts: waste of computation resources
1 Too late restarts: serious error accumulation



Naive Solution

] Naive solution: fixed time interval or fixed number of changes
1 Difficulty: error accumulation is not uniform

Normalized Number of Edges

DBLP FACEBOOK | | INTERNET MATH WIKI
1.501
1.251 |
1.001 V;_‘ -
0.75- b
0.50+

2468 2468 2468 246282468

Count of Restart

Normalized Time Interval

DBLP

FACEBOOK

INTERNET

MATH

WIKI

N

N
1

(@]
1

oo

ML

"_l'
=2
P

> 468 2468 2468246282468
Count of Restart

Ziwei Zhang, et al. TIMERS: Error-Bounded SVD Restart on Dynamic Networks. AAAI, 2018.




Existing Method

1 Existing method: monitor loss (Chen and Candan, KDD 2014)
[0 Lossin SVD:
J=1IS—UzVT||
S: target matrix, |U, %, V]: results of SVD
1 Problem: loss includes approximation error and intrinsic loss in SVD

Ziwei Zhang, et al. TIMERS: Error-Bounded SVD Restart on Dynamic Networks. AAAI, 2018.



Framework: Monitor Margin

1 Observation: the margin between the current loss and the Intrinsic
loss in SVD is the actual accumulated error

[ Currentloss: J = ||S — UZVT||2

L1 Intrinsic loss: £(S,k) = min
u*x*v*

s -yt

2
|F , k:dimensionality

Ziwei Zhang, et al. TIMERS: Error-Bounded SVD Restart on Dynamic Networks. AAAI, 2018.



E——— e
Solution: Lazy Restarts
] Lazy restarts: restart only when the margin exceeds the threshold
1 Problem: intrinsic loss is hard to compute
] Direct calculation has the same time complexity as SVD
] Relaxation: an upper bound on margin
1 Alower bound on intrinsic loss L(S,k)
J(t) = L(Si.k) _ T(t) — B(t)

L(S:, k) B(t)
J(t): current loss; L(S_t,k): intrinsic loss; B(t): bound of intrinsic loss

E(St,k) > B(t) — <

Ziwei Zhang, et al. TIMERS: Error-Bounded SVD Restart on Dynamic Networks. AAAI, 2018.



A Lower Bound of SVD Intrinsic Loss

] ldea: use matrix perturbation

Theorem 1 (A Lower Bound of SVD Intrinsic Loss). If S
and AS are symmetric matrices, then:

L(S+ AS, k) > L(S,k) + Atr*(S + AS, S) Z)\;
where A\ > Xo... > A\ are the top-k eigenvalues of Vg2 =
S-AS+AS-S+AS-AS, and

Atr*(S + AS,S) = tr ((S + AS) - (S + AS)) — tr(S - S).

1 Intuition: treat changes as a perturbation to the original network

Ziwei Zhang, et al. TIMERS: Error-Bounded SVD Restart on Dynamic Networks. AAAI, 2018.



Time Complexity Analysis

Theorem 2. The time complexity of calculating B(t) in Eqn
(13)is O(Mg + Mpk + Nrk?), where Mg is the number of
the non-zero elements in AS, and Ny, M, are the number
of the non-zero rows and elements in V g2 respectively.

e [fevery node has a equal probability of adding new edges,
we have: M ~ 2d,,,Ms, where d,,, is the average
degree of the network .

e For Barabasi Albert model (Barabdsi and Albert 1999), a
typical example of preferential attachment networks, we
have: My, ~ 15 [log(dmar) + 7] Ms, where ., is the
maximum degree of the network and v ~ 0.58 is a con-
stant.

Conclusion: the complexity is only linear to the local dynamic changes

Ziwei Zhang, et al. TIMERS: Error-Bounded SVD Restart on Dynamic Networks. AAAI, 2018.



Experimental Results: Approximation Error

] Fixing number of restarts

Datasel avg(r) max(r)

L TIMERS | LWI2 | Heu-FL | Heu-FT | TIMERS | LWI2 | Heu-FL | Heu-FT
FACEBOOK 0.005 0.020 0.009 0.011 0.014 0.038 0.025 0.023
MATH 0.037 0.057 0.044 0.051 0.085 0.226 0.117 0.179
WIKI 0.053 0.086 0.071 0.281 0.139 0.332 0.240 0.825
DBLP 0.042 0.110 0.053 0.064 0.121 0.386 0.198 0.238
INTERNET 0.152 0.218 0.196 0.961 0.385 0.806 0.647 1.897

1 FIXing maximum error 27%~42% Improvement

212}

10/

3 B 1MERS
= o I Heu-FL
5 = N Heu-FT

509 <l LDMNEE) AR A| WHEE) WURE) =

é’ U'L /

FACEBOOK MATH WIKI DBLP INTERNET

Ziwei Zhang, et al. TIMERS: Error-Bounded SVD Restart on Dynamic Networks. AAAI, 2018.



Section Summary
-1 : Out-of-sample nodes

- DepthLGP = Non-parametric GP + DNN

-1l . Incremental edges

- DHPE: Generalized Eigen Perturbation

- lll: Aggregated error

- TIMERS: A theoretically guaranteed SVD restart strategy

- IV. Scalable optimization

- D-SGD: A iteration-wise weighted SGD for highly dynamic data



Recap: Network Embedding

. Structure-preserved network embedding
. Property-preserved network embedding

. Dynamic network embedding
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Learning from networks




R
Graph Neural Networks

Can we design a learning mechanism to directly work on graphs?



The First Graph Neural Network

1 Basic idea: a recursive definition of states

== f(s@,sj,FV,F}/,Ffj)
_ JEN (i)
0 A simple example: PageRank

F. Scarselli, et al. The graph neural network model. IEEE TNN, 2009.
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Many GNNs have emerged since then

“Spatial methods” Relation Nets
P MTH?I!?L' Santnrn at al :raphSAGE
: amilton et al.
Original GNN GG-NN (CVER 2017) Programs as Graphs [NIPS 2017)
= Gorietal. == Lietal Neural MP Al,'g..”?i”fﬁ —>
(2005) (ICLR 2016) . NRI
Gilmer et al. <ipf et al
(ICML 2017) GAT L .
Velickovié etal. ~ML2018)
(ICLR 2018)
GCN
Kipf & Wellin .
(IF():LR 201 7)9 “DL on graph explosion”

Other early work:

- Duvenaud et al. (NIPS 2015)

- Dai et al. (ICML 2016)

GSpicgﬂN ChebNet ) ) _ Niepert et al. (ICML 2016)
rap _| Defferrard etal. | Spectral methods _ Battaglia et al. (NIPS 2016)
Bruna et al. NIPS 2016 - Atwood & Towsley (NIPS 2016)
ICLR 2015 ( )
( ) - Sukhbaatar et al. (NIPS 2016)

(slide inspired by Alexander Gaunt’s talk on GNNs)



How are GNNs compared with other NNs?

0 Capture information from graph
neighborhoods

0 Capture information from nearby
grids (i.e., a 2-D graph)

0 Capture information from contexts
(l.e., a 1-D graph)

We need to exchange information within neighborhoods



———RREEEEE
Message-passing Framework

' . [ [ . ~
1 Formulation: m@() _ AGG({hg ),Vj c Ni})
h{'"" = UPDATE([h!"”, m!"])

2

0 hl@: representation of node v; in the It" layer
O ml@: messages for node v; in the [t layer by aggregating neighbor representations

AWy
Ne /7
N,/

J. Gilmer, et al. Neural message passing for quantum chemistry. ICML, 2017.
W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs. NIPS, 2017.




Graph Convolutional Networks (GCN)

0 Main idea: averaging messages from direct neighborhoods

0 Stacking multiple layers like standard CNNSs:
o State-of-the-art results on node classification

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. ICLR, 2017.



Expected Properties of GNNs

0 Some expected properties of GNNSs:
O Trained end-to-end for downstream tasks
0 Vs. network embedding: unsupervised representation learning to handle various tasks

0 Utilize node features and graph structures simultaneously o

N | | o Are existing
0 A deep learning mode — GNNs good

0 Can handle real applications with data represented as graphs enough?




Outline

Does GNN fuse feature and topology optimally?
Is GNN really a deep model?

Technical challenges in real applications: robustness,

explainability and applicability



Outline

[0 Does GNN fuse feature and topology optimally?
[0 Is GNN really a deep model?
[0 Technical challenges in real applications: robustness,

explainability and applicability



The intrinsic problem GCN is solving

Fusing topology and features in the way of smoothing features with
the assistance of topology with a deep model.

X

Reuvisiting Graph Neural Networks All We Have is Low-Pass Filters, arXiv 1905.09550
Understanding the Representation Power of Graph Neural Networks in Learning Graph Topology, NeurlPS 2019



Can GNNs Fully Preserve Graph Structures?
1 When feature plays the key role, GNN performs good

] How about the contrary?
] Synthesis data: stochastic block model + random features

1 DeepWalk greatly outperforms all the GCNs Method Results
] Recall the message-passing framework Random 10.0
A _——— Initialized as node features
mgn :AGG({hj(.”Wj EAQ GCN-1 29.7
(1+1) (1) (1) _ GCN-2 48.4
b = UPDATE(Ih,", m;"}) Graph structures only provide -~ 6
neighborhoods in aggregation '
N o | _ o GCN-5 53.3
L1 Initial node features provide important inductive bias! DeepWalk 99.9

GCN-X: X number of layers
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Can GNNs Fully Preserve Graph Structures?

1 Theoretical analysis: node features as “true signal”, GNNs as a low-pass filtering
1 Simplified GCNI: removing all non-linearity
HO = ¢ly(0)
S=D"12AD" Y2 =1 —Lg,m,
[0 From graph signal processing, f' = Sf corresponds to a spectral filter [2!
gy =(1-2)
1 Thus GNNs are inevitably feature-centric

[0 More recent results on learning graph moments [l

Proposition 1. A graph convolutional network with n layers, and no bias terms, in general, can
learn f(A); = ) _; (A");; only if n = p orn > p if the bias is allowed.

1 Graph moment: similar to high-order proximities in network embedding

1. Simplifying Graph Convolutional Networks, ICML 2019
2. Reuvisiting Graph Neural Networks All We Have is Low-Pass Filters, arXiv 1905.09550
3. Understanding the Representation Power of Graph Neural Networks in Learning Graph Topology, NeurlPS 2019



S
A New Perspective to Understand GNNs

1 How can we empower GNNSs to preserve graph structures well?
1 A new perspective: treating GNNs as a type of (non-linear) dimensionality reduction

1 A slightly modified framework:
HD — 4 (;(A) H(me)

/

Non-linear mapping / ‘ \

Graph structures previous bases Linear transform
[l Three-steps
(1) Projecting graph structures into a subspace spanned by node representations in the last step
(2) The projected representations are linearly transformed followed by a non-linear mapping
(3) Repeat the process by using the new node representations as bases
1 Why are the existing GNNSs feature-centric?

— The Initial space is solely determined by node features!
Ziwei Zhang, Peng Cui, Jian Pei, Xin Wang, Wenwu Zhu. Eigen-GNN: A Graph Structure Preserving Plug-in for GNNSs. arXiv, 2006.04330.
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Eigen-GNN: A Graph Structure Preserving Plug-in

1 Framework

HY = X, f(Q)]

X: node features; Q: top-d eigenvector of a graph structure matrix; f(:): a simple function such as normalization
[l Experimental results:

Node classification Link Prediction Graph Isomorphism Test

Ziwei Zhang, Peng Cui, Jian Pei, Xin Wang, Wenwu Zhu. Eigen-GNN: A Graph Structure Preserving Plug-in for GNNSs. arXiv, 2006.04330.
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Can GNNs Fully Preserve Node Features?

Though GNNSs have a feature-driven mechanism, can they preserve node features well?
Case 1 Case 2

Correlated Topology Random Features Random topology  Correlated Features

DeepWalk > GCN MLP> GCN
Reason: the neighborhood only depends on structures (i.e., not depend on features)
How to find the most suitable neighborhoods adaptively?

GNNs also fail in preserving node features!




Topology
Graph

Feature
Graph

Adaptive Multi-channel GCN

( N
i _’"'_’%” ’i\ Specific Convolution Module

Common Convolutlon

% 2 2 g

(1) Parameter w(l+1)
i Sharing

I “ L1 Feature Graph

1 Topology Graph

M
4

uonuany
w

Xiao Wang, Meiqi Zhu, Deyu Bo, Peng Cui, Chuan Shi, Jian Pei. AM-GCN: Adaptive Multi-
channel Graph Convolutional Networks. KDD, 2020.



Adaptive Multi-channel GCN

Specific Convolution Common ConVOIUtlon MOdUIe
Z% —Zr

Topology
Graph

] Topology Graph

% 22 gl g

w£” Parameter wﬁ’”’
Sharing

@ﬁ) z9 @-—»Z‘:
) -

@ R ; [l Parameter Sharing
Specific Convolution J .

o 0 Common Embedding
Feature Z z¢ b
Graph ® B R ®-{_Z‘F

Xiao Wang, Meiqi Zhu, Deyu Bo, Peng Cui, Chuan Shi, Jian Pei. AM-GCN: Adaptive Multi-
channel Graph Convolutional Networks. KDD, 2020.
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Adaptlve Multl channel GCN
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Xiao Wang, Meiqi Zhu, Deyu Bo, Peng Cui, Chuan Shi, Jian Pei. AM-GCN: Adaptive Multi-
channel Graph Convolutional Networks. KDD, 2020.



Experimental Results

mm=esN

Datasets Metrics | L/C || DeepWalk LINE Chebyshev GCN kNN-GCN GAT DEMO-Net MixHop|I AM-GCN :
20 43.47 32.71 69.80 70.30 61.35 72.50 69.50 71.40 1 73.30 I

ACC 40 45.15 33.32 71.64 73.10 61.54 73.04 70.44 71.48 | 74.70 |

Citsseat 60 48.86 35.39 73.26 74.48 62.38 74.76 71.86 72.16 : 75.56 |
20 38.09 31.75 65.92 67.50 58.86 68.14 67.84 66.96 I 69.22 I

F1 40 43.18 32.42 68.31 69.70 59.33 69.58 66.97 67.40 69.81 :

60 48.01 34.37 70.31 71.24 60.07 71.60 68.22 69.31 | 70.92 |

20 42.02 43.47 50.02 49.88 66.06 56.92 23.45 61.56 | 70.46 I

ACC 40 51.26 45.37 58.18 51.80 68.74 63.74 30.29 65.05 | 73.14 |

UAI2010 60 54.37 51.05 59.82 54.40 71.64 68.44 34.11 67.66 : 74.40 |
20 32.93 37.01 33.65 32.86 52.43 39.61 16.82 49.19 | 55.61 I

F1 40 46.01 39.62 38.80 33.80 54.45 45.08 26.36 53.86 | 64.88 :

60 44 .43 43.76 40.60 34.12 54.78 48.97 29.05 56.31 1 65.99 I

20 62.69 41.28 75.24 87.80 78.52 87.36 84.48 81.08 | 90.70

ACC 40 63.00 45.83 81.64 89.06 81.66 88.60 85.70 82.34 : 90.76 I

ACM 60 67.03 50.41 85.43 90.54 82.00 90.40 86.55 83.09 : 91.42 l
20 62.11 40.12 74.86 87.82 78.14 87.44 84.16 81.40 I 90.63 :

F1 40 61.88 45.79 81.26 89.00 81.53 88.55 84.83 81.13 | 90.66 :

60 66.99 49.92 85.26 90.49 81.95 90.39 84.05 82.24 1| 91.36 I

\

Xiao Wang, Meiqi Zhu, Deyu Bo, Peng Cui, Chuan Shi, Jian Pei. AM-GCN: Adaptive Multi-
channel Graph Convolutional Networks. KDD, 2020.



Permutation-equivariance of GNNs

Permutation-equivariance property
If we randomly permute the IDs of nodes while maintaining the graph structure, the

representations of nodes in GNNs should be permuted accordingly

Pros:

Guarantees that the embeddings of automorphic nodes are identical
Automatically generalize to all the O(N!) permutations when training with only one
permutation

Most of the existing message-passing GNNs satisfy permutation-equivariance

Permutation-equivariant Node Embeddings
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Permutation-equivariance vs. Proximity-aware

[0 However, permutation-equivariance and proximity-aware are conflicting
They are structurally equivalent

@ - But there is no proximity @

ed Squm% Pelagic Fish
]
Lynx
Zooplankton

Orca
White Spruce  Snowshoe H éﬂ‘/v
und Squirrel Penguin

I> iI Conflicting I> <I

Permutation-equivariant Proximity-preserving
Node Embeddings Node Embeddings

Position-aware graph neural networks. ICML 20109.
On the Equivalence between Positional Node Embeddings and Structural Graph Representations. ICLR 2020.




Unique Node Identifiers
1 The key problem is that nodes cannot differentiate each other

[0 Theoretical analysis: uniqgue node identifiers are one necessary condition
for GNNs to be universal approximation

What graph neural networks cannot learn depth vs width, ICLR 2020



Stochastic Message Passing (SMP)

1 Assign stochastic features as node identifiers
[0 Gaussian features: associate with random projection literature

1 A dual GNN architecture:

Ziwei Zhang, Chenhao Niu, Peng Cui, et al. A Simple and General Graph Neural Network with Stochastic Message Passing. arXiv, 2009.02562.



Theoretical Guarantee
SMP can preserve node proximities

Theorem 2. An SMP in Eq. with the message-passing matrix A and the number of propagation
steps I can preserve the walk-based proximity A (A" with high probability if the dimensional-

ity of the stochastic matrix d is sufficiently large, where the superscript " denotes matrix transpose.
The theorem is regardless of whether E are fixed or resampled.

SMP can recover the existing permutation-equivariant GNNs

Corollary 2. For any task, Eq. with the aforementioned linear F () is at least as powerful as
the permutation-equivariant Foyy: (A, F; W'), i.e., the minimum training loss of using H in Eq.
is equal to or smaller than using H) = Foan (A, F: W').

An adaptive GNN that maintains both proximity-awareness and
permutation-equivariance

Ziwei Zhang, Chenhao Niu, Peng Cui, et al. A Simple and General Graph Neural Network with Stochastic Message Passing. arXiv, 2009.02562.



Experimental Results

Table 2: The results of link prediction tasks measured in AUC (%). The best results and the second-

best results for each dataset, respectively, are in bold and underlined.

Model | Grid Communities  Email CS Physics PPI

SGC 57.6+38 51.941.6 68.5+7.0 96.5+0.1 96.6+0.1 80.540.4 j

GCN 61.8+£3.6  50.3+2.5 674469 934403 93.840.2 78.040.4 Supenor.perforl.’na_mce when
GAT 61.0+£55 51.1%1.6 535463  93.740.9 94.1+£0.4 793405  the task is prox|m|ty-re|ated
PGNN’ 73.446.0  97.840.6 709464 822405 Out of memory  80.8+0.4

SMP-Identity | 55.144.8  98.040.7 729451 96.5+0.1  96.540.1 81.04:0.2

SMP-Linear | 73.6+6.2 97.740.5 757450 96.7+0.1 96.140.1 81.9+0.3

Table 3: The results of node classification tasks measured by accuracy (%). The best results and the
second-best results for each dataset, respectively, are in bold and underlined.

Model | Communities  CS Physics Cora CiteSekr PubMed

SGC 71421 6724128  92.3+1.6 769402  63.640.0 74.240.1 Comparable performance

GCN 7.541.2 OL140.7  93.140.8 81.440.5 713405 79.3+0.4 : T

GAT 5.00.0 905105  93.1+0.4 82.910.5 712406 77.940.5 when permutation-equivariant
PGNN 52405 776476  Outofmemory 59.2+1.5 55709 owofmemory 1S helpful

SMP-Linear | 99.9:£0.3 91.540.8  93.140.8 80.940.8 682410 76.5+0.8

Ziwei Zhang, Chenhao Niu, Peng Cui, et al. A Simple and General Graph Neural Network with Stochastic Message Passing. arXiv, 2009.02562.



Outline

[0 Does GNN fuse feature and topology optimally?
[0 Is GNN really a deep model?
[0 Technical challenges in real applications: robustness,

explainability and applicability



Is GNN really a deep model?

] Though GNNs are motivated as “deep learning”, most models only adopt 2-3 layers

Citeseer Cora Pubmed
0.90 . : : . . : T . . . . T . . : .
0.95r 0.88}
0.85 0.90l
0.86f
0.80} 0.851
0.84}
0.75 0.80} Ot
> > v e >
@ 3 W @ 0.82}
50.70 50.75 W 5
(=) o (=)
< < < 0.80
0.65¢ 0.70} .
. .' . .
osol " frain . 065 “T7°° Traln ] 078l === Train
e———= Train (Residual) ——— Train (Residual) ———= Train (Residual)
_________ 1]
055 - » Test . ] 0.60 - = Test . J 0.761 - =+ Test . n“‘
——— Test (Residual) —— Test (Residual) ——— Test (Residual) !
oS0 . . .. 055
“"1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 66 7 8 9 10
Number of layers Number of layers Number of layers

] Possible reasons:
] Difficulties In training deep networks, e.g., over-fitting, vanishing gradients
] Over-smoothing, i.e. all nodes have similar representations in deeper layers

Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017.
Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning, AAAI 2018.
Graph Neural Networks Exponentially Lose Expressive Power for Node Classification, ICLR 2020.



Is GNN really a deep model?

] State-of-the-art CNNs can have hundreds of layers, e.g., ResNet, DenseNet

1 Can we mimic them and use similar ideas to develop GNNs?
] Residual connections, dense connections, and dilated aggregation

Input ¢ : Input : Input ¢
y A 4
PlainGCN : ResGCN : DenseGCN \
k=16 f=64 " k=16 f=64 d=1 I k=16 f=64 d=1
I I — I +——
PlainGCN I ResGCN > I DenseGCN\
k=16 =64 I k=16 f=64 d=1 I k=16 f=32 d=1
I [ I /
PlainGCN 1 ResGCN 1 DenseGCN
k=16 =64 1 k=16 f=64 d=2 1 k=16 f=32 d=2
1 1
1 1
1 1
[ ] I L I L
PlainGCN 1 ResGCN 1 DenseGCN
k=16 =64 I k=16 f=64 d=26 1 k=16 f=32 d=26
T 1 1
PlainGCN : ResGCN : DenseGCN
k=16 f=64 " k=16 f=64 d=27 : k=16 f=32 d=27
X I X I X
. I 1
PlainGCN ResGCN I DenseGCN
Backbone : Backbone : Backbone

DeepGCNs: Can GCNs Go as Deep as CNNs? ICCV 2019



More Recent Approaches

0 How to prevent node embedding from

] Design specific dropout to graph data
— Randomly drop edges in each epoch

being similar?

— Make total pairwise feature distances
remained a constant across layers

X

pmmmememesemeoees PairNorm ------------------ .

X 4 X© TX

]
A
graph conv center rescale
L]

] Theoretical insights:
] A data augmentation technique
1 A message passing reducer

DropEdge: Towards Deep Graph Convolutional Networks
on Node Classification, ICLR 2020

\
\j

PairNorm: Tackling Oversmoothing in GNNs, ICLR 2020



A Hot Research Topic

] How to train real deep GNNs is still an on-going research topic
1 DeepGCNs, DropEdge, PairNorm

1 Many more:

1 Measuring and Relieving the Over-smoothing Problem for Graph Neural Networks from the
Topological View, AAAI 2020

1 Towards Deeper Graph Neural Networks, KDD 2020

1 What graph neural networks cannot learn: depth vs width, ICLR 2020

1 Simple and deep GNN, ICML 2020

1 Bayesian Graph Neural Networks with Adaptive Connection Sampling, ICML 2020

1 An Anatomy of Graph Neural Networks Going Deep via the Lens of Mutual Information: Exponential
Decay vs. Full Preservation, arXiv 1910.04499

1 Revisiting Oversmoothing in Deep GCNs, arXiv 2003.13663

1 Towards Deeper Graph Neural Networks with Differentiable Group Normalization, arXiv 2006.06972

1 DeeperGCN: All You Need to Train Deeper GCNs, arXiv 2006.07739

1 Effective Training Strategies for Deep Graph Neural Networks, arXiv 2006.07107

1 Graphs, Entities, and Step Mixture, arXiv 2005.08485



Cautious: whether and when GNNs need to go deep?

Cautious: whether and when do we need deep GNNs?
A wider neighborhood structure? The extra non-linearity?

Recall Simplified GCNU formulation:

H&+D) = sy k)

Y = softmax|

There are also recent theoretical results!?l :

(SKlI(O)W) High-order proximity

problem

bound

problem

bound

cycle detection (odd)
cycle detection (even)
subgraph verification*
min. spanning tree
min. cut

diam. computation

dw = Q(n/logn)

dw = Q(y/n/logn)
dy/w = Q(y/n/logn)
dv/w = Q(y/n/logn)

dy/w = Q(y/n/logn)
dw = Q(n/logn)

shortest path
max. indep. set
min. vertex cover
perfect coloring
girth 2-approx.
diam. 3/2-approx.

dyvw = Q(y/n/logn)

dw = Q(n?/log?n) for w = O(1)
dw = Q(n2/log?n) for w = O(1)
dw = Q(ﬂ?/log2 n) forw = O(1)
dw = Q(y/n/logn)
dw = Q(y/n/logn)

Simplifying graph convolutional networks, ICML 2019
What graph neural networks cannot learn depth vs width, ICLR 2020



Outline

[0 Does GNN fuse feature and topology optimally?
[0 Is GNN really a deep model?
O Technical challenges in real applications: robustness,

explainability and applicability
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Technical challenges in real applications

— Application

Robustness Interpretability Applicability

Hot directions in computer vision:

Adversarial Explainable Scalable



Robusthess in GNNs

] Adversarial attacks
1 Small perturbations in graph structures and node attributes

] Great challenges for applying GNNs to node classification

Results for attacking Citeseer data

[1
]

Train node clossification model |

oF torget node

[] erfurbation [
K’% ' '\bﬁ
attocker node [ ]

@“’ g
s

.: 1.04
E 0.5 4
5!
B Pl o G o o e g e
8 E
=
- 5 05 %%
E Ec
Target gets < 10 ".' . : .
misclazsifled Mettack Mettack-In. Clean
graph
(ztl
(12) . "/;!-I-l
""" HH \.
\ "o o y

'\l\_szru -
Adversarial Attacks on Neural Networks for Graph Data, KDD 2018

Q* 'value _/ argmdx{,}'z (5 ﬂz u_}
a



Adversarial Attacks on GNNs

] Categories

] Targeted vs. Non-targeted
] Targeted: the attacker focus on misclassifying some target nodes

1 Non-targeted: the attacker aims to reduce the overall model performance

1 Direct vs. Influence

1 Direct: the attacker can directly manipulate the edges/features of the target nodes
1 Influence: the attacker can only manipulate other nodes except the targets

1 Attacker knowledge:

Settings Parameters | Predictions | Labels Training Input
White-Box Attack (WBA) v v v v
Practical White-box Attack (PWA) v v v
Restrict Black-box Attack (RBA) v
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GF-Attack: Restrict Black-box Attack for Graphs

Original Embedding Original Prediction
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Attacked Embedding

Understand the various graph embedding model from a new general Graph Signal
Processing (GSP) perspective.

An adversarial framework, GF-Attack, is proposed accordingly to perform attacks
though graph filters in a RBA fashion.

Heng Chang, Yu Rong, Tingyang Xu, Wenbing Huang, Honglei Zhang, Peng Cui, Wenwu Zhu, Junzhou Huang
A Restricted Black-box Adversarial Framework Towards Attacking Graph Embedding Models. AAAI, 2020.



R
GF-Attack: Restrict Black-box Attack for Graphs

Core idea: constructing the attack damage measuring by attacking the graph filter H
Measuring the quality of output embedding Z as the T-rank approximation problem:

LA, Z) = |h(S)X — h(S")r X[}

arg max E A2 E ui X3, ,
A; and u; are an eigen-
1=T+1 1=T+1

st [|A” — Al = 28.

GCN/SGC as Example: rewrite the GCN/SGC with § = 2, — L>Y™: A
X =2, - LY")EX, X' =0(XO),L5¥" =], - D 3AD" 3 =1, — A
The corresponding adversarial attack loss for K;; order GCN/SGC is constructed as:

Equivalent to optimize:

pair of graph filter .

n

mn
argmax Y (N, + D Y Juf, X
1=T+1 1=T+1

A linear time approximation via eigenvalue perturbation theory is used

Heng Chang, Yu Rong, Tingyang Xu, Wenbing Huang, Honglei Zhang, Peng Cui, Wenwu Zhu, Junzhou Huang
A Restricted Black-box Adversarial Framework Towards Attacking Graph Embedding Models. AAAI, 2020.
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Robust Graph Convolutional Networks
] How to enhance the robustness of GNNs against adversarial attacks?

1 Adversarial attacks in node classification
1 Connect nodes from different communities to confuse the classifier

1 Distribution vs. plain vectors
] Plain vectors cannot adapt to such changes
] Variances can help to absorb the effects of adversarial changes
] Gaussian distributions — Hidden representations of nodes

Dingyuan Zhu, Ziwei Zhang, Peng Cui, Wenwu Zhu. Robust Graph Convolutional Networks Against Adversarial Attacks. KDD, 2019.



The Framework of RGCN

e —.|sample & —
- Mt ’

- Task $pecific
| Loss Function
b4

Feature f |
metrix WA (%A A 4
(oo 0@ || X - goct = gt
Y X X N} | :::
0 00 Variance-based | 2900
Y N X Altention Attention L 1 1 ]
Gaussian based representations: Attention mechanism: Sampling process: explicitly
variance terms absorb the effects of Remedy the propagation considers mathematical relevance
adversarial attacks of adversarial attacks between means and variances

Dingyuan Zhu, Ziwei Zhang, Peng Cui, Wenwu Zhu. Robust Graph Convolutional Networks Against Adversarial Attacks. KDD, 2019.



Experimental Results
1 Node Classification on Clean Datasets

Cora | Citeseer | Pubmed
GCN 51.0 70.9 79.0
GAT 53.0 72.5 79.0
RGCN | 83.1 71.3 79.2

1 Against Non-targeted Adversarial Attacks

Cora Dataset 075 Citeseer Dataset i Pubmed Dataset

Accuracy

0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 o 0.2 0.4 0.6 0.8 1
Ratio of Noise Edges Ratio of Noise Edges Ratio of Noise Edges

Figure 2: Results of different methods when adopting Random Attack as the attack method.

Dingyuan Zhu, Ziwei Zhang, Peng Cui, Wenwu Zhu. Robust Graph Convolutional Networks Against Adversarial Attacks. KDD, 2019.



Interpretability of GNNs

0 A real-world graph is typically formed due to many latent factors.

0 Existing GNNs/GCNSs:

| 1 A holistic approach, that takes in the
| Social Circles whole neighborhood to produce a

@. single node representation

0 We suggest:

[0 To disentangle the latent factors

(By segmenting the heterogeneous parts, and learning
multiple factor-specific representations for a node)

[0 Robustness (e.g., not overreact to an irrelevant factor)
& Interpretability




Disentangled Representation Learning

0 That is, we aim to learn disentangled node representations

[ A representation that contains independent components, that describes
different aspects (caused by different latent factors) of the observation

0 The topic is well studied in the field of computer vision
0 But largely unexplored in the literature of GNNSs.

Example: Three dimensions that are related skin color, age/gender, and saturation, respectively.



Method Overview
00 We present DisenGCN, the disentangled graph convolutional network
0 DisenCony, a disentangled multichannel convolutional layer (figure below)

0 Each channel convolutes features related with a single latent factor

Jianxin Ma, Peng Cui, Kun Kuang, Xin Wang, Wenwu Zhu. Disentangled Graph Convolutional Networks. ICML, 2019.



Results: Multi-label Classification

Jianxin Ma, Peng Cui, Kun Kuang, Xin Wang, Wenwu Zhu. Disentangled Graph Convolutional Networks. ICML, 2019.



Results: On Synthetic Graphs

Table 3. Micro-F1 scores on synthetic graphs generated with different numbers of latent factors.

Number of latent factors

Method 4 6 8 10 12 14 16
GCN 78.78 £ 1.52 65.73 = 1.94 46.55 &= 1.55 37.37 = 1.52 2449 4+ 1.03 18.14 £ 1.50 16.43 £ 0.92
GAT 83.77 £ 2.32 60.89 £ 3.75 45.88 £ 3.79 36.72 £ 3.58 24.77 £ 3.47 20.89 + 3.57 19.53 + 3.97

DisenGCN (this work) 93.84 + 1.12 74.68 + 1.92 54.57 4+ 1.79 43.96 + 1.45 28.17 + 1.22 23.57 + 1.28 21.99 + 1.34

Relative improvement  +12.02% +13.62% +17.23% +17.63% +13.73% +12.83% +12.6%

Improvement is larger when #factors is relatively large (around 8)

Jianxin Ma, Peng Cui, Kun Kuang, Xin Wang, Wenwu Zhu. Disentangled Graph Convolutional Networks. ICML, 2019.



Results: Correlations between the Neurons
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Jianxin Ma, Peng Cui, Kun Kuang, Xin Wang, Wenwu Zhu. Disentangled Graph Convolutional Networks. ICML, 2019.
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Applicability of GNNs/Network embedding

L1 Link Prediction

L1 Community Detection
1 Node Classification
1 Network Distance

1 Node Importance

High-order

oo T

Transitivity  Global position

Various network properties Various applications

' [0 Leading to a large number of hyper-parameters, TSN
: L1 Must be carefully tuned :

AutoML



AutoML

] Ease the adoption of machine learning and reduce the reliance on

human experts
1 E.qg., hyper-parameter optimization, neural architecture search

] Largely unexplored on graph/network data

] Large-scale issue:
1 Complexity of GNNs/Network Embedding is usually at least O(E)
1 E Is the number of edges (can be 10 billion)
] Total complexity: O(ET), T is the times searching for optimal hyperparameters

How to incorporate AutoML into massive GNNs efficiently?



AutoML for GNN/Network embedding

1 A straightforward way: configuration selection on sampled sub-networks

1 Transferability
1 8 + optimal configuration on the origin network

] Heterogeneity
1 Several highly heterogeneous components — needs carefully designed sampling

Ke Tu, Jianxin Ma, Peng Cui, Jian Pei, Wenwu Zhu. AutoNE: Hyperparameter Optimization for Massive Network Embedding. KDD, 2019.



AutoNE

Transfer the knowledge about optimal hyperparameters from

the sub-networks to the original massive network

Ke Tu, Jianxin Ma, Peng Cui, Jian Pei, Wenwu Zhu. AutoNE: Hyperparameter Optimization for Massive Network Embedding. KDD, 2019.



Experiments: Sampling-Based NE
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(a) Classification on BlogCatalog (b) Classification on Wikipedia () Link prediction on BlogCatalog (d) Link prediction on Wikipedia

The performance achieved within various time thresholds.

(d) Link prediction on Wikipedia

(a) Classification on BlogCatalog (b) Classification on Wikipedia {c) Link prediction on BlogCatalog

The number of trials to reach a certain performance threshold
Ke Tu, Jianxin Ma, Peng Cui, Jian Pei, Wenwu Zhu. AutoNE: Hyperparameter Optimization for Massive Network Embedding. KDD, 2019.



Recap: Graph Neural Networks

[0 Message-passing framework of GNNs

] Frontiers:
1 Does GNN
[J Is GNN rea

1 Technical c

fuse feature and topology optimally?

ly a deep model?

nallenges in real applications: robustness,

explainability and applicability



Summaries and Conclusions

Unsupervised vs. (Semi-)Supervised

Learning for Networks vs. Learning via Graphs

Topology-driven vs. Feature-driven

Both GNN and NE need to treat the counterpart as the baselines
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