
Peng Cui,  Ziwei Zhang

Tsinghua University

Frontiers in GNN and Network Embedding

1



2

The general description of data and their relations.

Network (Graph)



3

Many types of data are networks

Social Networks Biology Networks Finance Networks

Internet of Things Information Networks Logistic Networks



4

Graphs in NLP
Syntactic Dependency

Word Co-occurrences

Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling, EMNLP 2017

Large-Scale Hierarchical Text Classification with Recursively Regularized Deep Graph-CNN, WWW 2018

A Graph-to-Sequence Model for AMR-to-Text Generation, ACL 2018

Abstract Meaning Representation 



5

Knowledge Graph

https://yashuseth.blog/2019/10/08/introduction-question-answering-knowledge-graphs-kgqa/

Building and Querying an Enterprise Knowledge Graph, TSC 2019



6

NLP + Computer Vision

Neural Motifs: Scene Graph Parsing with Global Context, CVPR 2018

Aligned Dual Channel Graph Convolutional Network for Visual Question Answering, ACL 2020

Scene Graph Visual Question Answering



7

Why network is important?

In few cases, you only care about a subject but not its 

relations with other subjects.

Reflected by relational subjects Decided by relational subjects 

Target

Target

Image Characterization Social Capital



Recommendation Systems
Link prediction in 

bipartite graphs

Many applications are intrinsically network problems

5



Financial credit & risk management Node importance & classification

Many applications are intrinsically network problems

6



Many applications are intrinsically network problems

New material discovery Subgraph pattern discovery

7



11

Graph as a data model

 The last resort for the curse of complexity in real applications

 Geographical networks, relationships, etc.

 Divide-and-conquer in modeling

 Individual nodes and edges are well structured

 Global structures are weakly organized



12

Networks are not learning-friendly

G = ( V, E )

Links Topology

Inapplicability of 

ML methods

Network 

Data

Feature 

Extraction

Pattern 

Discovery

Network 

Applications

Pipeline for network analysis



13

Learning from networks

Network 

Embedding
GNN



14

Network Embedding and GNN

Graph

Feature

Network 

Embedding

GNN

Input

Task results

Model Output

Embedding

Task results

Feature

Topology to Vector

Fusion of Topology and Features

Unsupervised vs. (Semi-)Supervised



15

Graph Neural network vs. Network embedding

 In some sense, they are different

 Graphs exist in mathematics (Data Structure)

 Mathematical structures used to model pairwise relations between objects

 Networks exist in the real world (Data)

 Social networks, logistic networks, biology networks, transaction networks, etc.

 A network can be represented by a graph

 A dataset that is not a network can also be represented by a graph



16

GNN for Natural Language Processing

 Many papers on BERT + GNN.

 BERT is for retrieval.

 It creates an initial graph of relevant 
entities and the initial evidence.

 GNN is for reasoning.

 It collects evidence (i.e., old 
messages on the entities) and arrive 
at new conclusions (i.e., new 
messages on the entities), by passing 
the messages around and 
aggregating them.

Cognitive Graph for Multi-Hop Reading Comprehension at Scale. Ding et al., ACL 2019.

Dynamically Fused Graph Network for Multi-hop Reasoning. Xiao et al., ACL 2019.



17

GNN for Computer Vision

 A popular trend in CV is to construct a graph during the learning process

 To process multiple objects or parts in a scene, and to infer their relationships

 Example: Scene graphs

Scene Graph Generation by Iterative Message Passing. Xu et al., CVPR 2017.

Image Generation from Scene Graphs. Johnson et al., CVPR 2018.



18

GNN for Symbolic Reasoning

 We can view the process of symbolic reasoning as a directed acyclic graph

 Many recent efforts use GNNs to perform symbolic reasoning

Learning by Abstraction: The Neural State Machine. Hudson & Manning, NeurIPS 2019

Can Graph Neural Networks Help Logic Reasoning? Zhang et al., arXiv 1906.02111

Symbolic Graph Reasoning Meets Convolutions. Liang et al., NeurIPS 2018



19

GNN for Structural Equation Modeling
 Structural equation modeling, a form of causal modeling, tries to describe the 

relationships between the variables as a directed acyclic graph (DAG)

 GNN can be used to represent a nonlinear structural equation and help find 

the DAG, after treating the adjacency matrix as parameters

DAG-GNN: DAG Structure Learning with Graph Neural Networks. Yu et al., ICML 2019



20

Pipeline for (most) GNN works

Raw Data
Graph 

Construction
GNN End task



21

 Co-occurrence (neighborhood)

Network embedding: topology to vector



22

 High-order proximities

Network embedding: topology to vector



23

 Communities

Network embedding: topology to vector



24

 Heterogeneous networks

Network embedding: topology to vector



25

Pipeline for (most) Network Embedding works

Network 

Data

Network 

Embedding

Downstream 

Model
End task



26

Learning for Networks vs. Learning via Graphs

Learning for Networks

L
e
a
rn

in
g
 v

ia
 G

ra
p
h
s

Network 

Embedding

GNN



27

The intrinsic problems NE is solving

Reducing representation dimensionality while preserving necessary 

topological structures and properties.

Nodes & Links

Node Neighborhood

Community

Pair-wise Proximity

Hyper Edges

Global Structure

Non-transitivity

Asymmetric 

Transitivity

Dynamic

Uncertainty

Heterogeneity

Interpretability



28

The intrinsic problem GNN is solving

Fusing topology and features in the way of smoothing features with 

the assistance of topology.

N

N

N

d

N

d

X =



29

Network Embedding vs. GNN

Node 

Features
Topology

Network 

Embedding

Feature-based 

Learning
GNN

There is no better one, but there is more proper one.



30

Learning from networks

Network 

Embedding



31

G = ( V, E ) G = ( V )
Vector Space

generate

embed

 Easy to parallel

 Can apply classical ML methods

Network Embedding



The ultimate goal

in Vector Space

Network Inference

• Node importance

• Community detection

• Network distance

• Link prediction

• Node classification

• Network evolution

• …

32



33

The goal of network embedding

Goal  Support network inference in vector space

Reflect network 

structure

Maintain network 

properties

B

A C

Transitivity

Transform network nodes into vectors that are fit for 

off-the-shelf machine learning models



Outline

• Structure-preserved network embedding

• Property-preserved network embedding

• Dynamic network embedding

34



• Structure-preserved network embedding

• Property-preserved network embedding

• Dynamic network embedding

Outline

35



Nodes & Links

Community Structures

Pair-wise Proximity

Hyper Edges

Global Structure

Network Structures

36



 Capturing the underlying structure of networks

 Advantages:

 Solve the sparsity problem of network connections

 Measure indirect relationship between nodes

High-Order Proximity

37



DeepWalk

 Exploit truncated random walks to define neighborhoods of a node.

B. Perozzi et al. Deepwalk: Online learning of social representations. KDD 2014.

Random Walks on Graph

• 𝑉26 − 𝑉25 − 𝑉32 − 𝑉3 − 𝑉10…

• 𝑉5 − 𝑉7 − 𝑉17 − 𝑉6 − 𝑉11…

• 𝑉31 − 𝑉33 − 𝑉21 − 𝑉33 − 𝑉15

38



Jian Tang et al. LINE: Large-scale Information Network Embedding. WWW 2015.

LINE with Second-order Proximity:

neighborhood structures

LINE with First-order Proximity:

local pairwise

LINE

39



Unsupervised Autoencoder

(preserve second-order proximity)

Unsupervised Autoencoder

(preserve second-order proximity)

SDNE – Structural Deep Network Embedding

Daixin Wang et al. Structural Deep Network Embedding. KDD, 2016.

40



GraRep

Shaosheng Cao et al. GraRep: Learning Graph Representations with Global Structural Information. CIKM 2015.

capturing

different

k-step

information

maintaining

different

k-step

information

separately

1-step 2-step 3-step 4-step

Do not distinguish 1-step and 2-step

41



 Different networks/tasks require different high-order proximities

 E.g., multi-scale classification (Bryan Perozzi, et al, 2017)

 E.g., networks with different scales and sparsity

 Proximities of different orders can also be arbitrarily weighted

 E.g., equal weights, exponentially decayed weights (Katz) 

What is the right order?

42



 Existing methods can only preserve one fixed high-order proximity

 Different high-order proximities are calculated separately

→ How to preserve arbitrary-order proximity while guaranteeing accuracy and efficiency?

……
Proximity1

Proximity2 Proximity3 Proximity4

Embedding1 Embedding2 Embedding3 Embedding4

Time consuming!

What is the right order?

43



Problem Formulation
 High-order proximity: a polynomial function of the adjacency matrix

𝑆 = 𝑓 𝐴 = 𝑤1𝐴
1 +𝑤2𝐴

2 +⋯+𝑤𝑞𝐴
𝑞

 𝑞: order; 𝑤1…𝑤𝑞: weights, assuming to be non-negative

 𝐴: could be replaced by other variations (such as the Laplacian matrix)

 Objective function: matrix factorization

min
𝑈∗,𝑉∗

𝑆 − 𝑈∗𝑉∗𝑇
𝐹

2

 𝑈∗, 𝑉∗ ∈ ℝ𝑁×𝑑: left/right embedding vectors

 d: dimensionality of the space

 Optimal solution: Singular Value Decomposition (SVD)

 𝑈, Σ, 𝑉 : top-d SVD results

𝑈∗ = 𝑈 Σ, 𝑉∗ = 𝑉 Σ

44

Ziwei Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018. 



Eigen-decomposition Reweighting
 Eigen-decomposition reweighting

 Insights: high-order proximity is simply re-weighting dimensions!

𝐴 𝑋Λ
Eigen-decomposition

𝑆

Polynomial ℱ · Polynomial ℱ ·

𝑋ℱ ΛEigen-decomposition

Time Consuming!

Time Consuming!

Efficient!

Efficient!

Z. Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018. 

𝑈∗ = 𝑈 Σ, 𝑉∗ = 𝑉 Σ

45

Ziwei Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018. 



 Shifting across different orders/weights:

 Preserving arbitrary-order proximity

 Low marginal cost

 Accurate and efficient

Preserving Arbitrary-Order Proximity

Eigen-decomposition
𝑋Λ

……

Embedding1

Embedding2

Embedding3

Efficient!

Shifting

Embedding4

46

Ziwei Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018. 



 Link Prediction

+200%+100%

Experimental Results

47

Ziwei Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018. 



 Existing network embeddings (e.g., AROPE) can handle million-scale networks

 But real graphs can have billions of nodes and edges

 Social Networks

 WeChat: 1 billion monthly active users (March, 2018)

 Facebook: 2 billion active users (2017)

 E-commerce Networks

 Amazon: 353 million products, 310 million users, 5 billion orders (2017)

 Citation Networks

 130 million authors, 233 million publications, 754 million citations (Aminer, 2018)

48

Billion-Scale Networks

How to scale embedding methods to billion-scale networks?



49

Random Projection for Matrix Factorization
 Objective function: matrix factorization of preserving high-order proximity

min
𝑈,𝑉

𝑆 − 𝑈𝑉𝑇 𝑝
2

𝑆 = 𝑓 𝐴 = 𝛼1𝐴
1 + 𝛼2𝐴

2 +⋯+ 𝛼𝑞𝐴
𝑞

 Essentially a dimensionality reduction problem

 Random projection: optimization-free for dimensionality reduction

 Basic idea: randomly project data into a low-dimensional subspace

 Extremely efficient and friendly to distributed computing

 Denote 𝑅 ∈ ℝ𝑁×𝑑 as a Gaussian random matrix

𝑅𝑖𝑗~𝒩 0,
1

𝑑

 Surprisingly simple result:

𝑈 = 𝑆𝑅

Ziwei Zhang, et al. Billion-scale Network Embedding with Iterative Random Projection. ICDM, 2018. 



50

Theoretical Guarantee
 Slight modification: assuming positive semi-definite and using 2-norm

min
𝑈

𝑆𝑆𝑇 − 𝑈𝑈𝑇
2

𝑆 = 𝑓 𝐴 = 𝛼1𝐴
1 + 𝛼2𝐴

2 +⋯+ 𝛼𝑞𝐴
𝑞

 Theoretical guarantee

 Basically, random projection can effectively minimize the objective function

 However, calculating 𝑆 is still very time consuming

Ziwei Zhang, et al. Billion-scale Network Embedding with Iterative Random Projection. ICDM, 2018. 



51

RandNE: Iterative Projection
 Iterative projection: can be calculated iteratively

𝑈 = 𝑆𝑅 = 𝛼1𝐴
1 + 𝛼2𝐴

2 +⋯+ 𝛼𝑞𝐴
𝑞 𝑅

= 𝛼1𝐴
1𝑅 + 𝛼2𝐴

2𝑅 +⋯+ 𝛼𝑞𝐴
𝑞𝑅

Why efficient?

 𝐴: 𝑁 × 𝑁 sparse adjacency matrix

 𝑅: 𝑁 × 𝑑 low-dimensional matrix

 Associative law of matrix multiplication

× A × A × A

𝐴𝐴…𝐴𝐴𝐴𝑅

𝐴𝐴…𝐴𝐴 𝐴𝑅

𝐴𝐴…𝐴 𝐴𝐴𝑅

Sparse

Low-dimensional

Sparse

Low-dimensional

Sparse

Low-dimensional

Sparse matrix multiplication!

A1 A2 Aq
× A × A × A…

× R

𝑈1
× A

𝑈2 𝑈𝑞
× A × A…

× R

Time Consuming!

Efficient!

Ziwei Zhang, et al. Billion-scale Network Embedding with Iterative Random Projection. ICDM, 2018. 



52

Distributed Calculation
 Iterative random projection only involves matrix multiplication 𝑈𝑖 = 𝐴𝑈𝑖−1

 Each dimension can be calculated separately

 Property of sparse matrix multiplication

 No communication is needed during calculation!

𝑈 ∈ ℝ𝑁×𝑑

Ziwei Zhang, et al. Billion-scale Network Embedding with Iterative Random Projection. ICDM, 2018. 



53

Experimental Results
 Running time

At least dozens of times faster

 Link Prediction

Superior or comparable performance

Ziwei Zhang, et al. Billion-scale Network Embedding with Iterative Random Projection. ICDM, 2018. 



Section Summary

Nodes & Links

Community Structures

Pair-wise Proximity

Hyper Edges

Global Structure

Network 

Characteristics

Application 

Characteristics

54



Outline

• Structure-preserved network embedding

• Property-preserved network embedding

• Dynamic network embedding

55



Why preserve network properties? 

Heterogeneity

56



Transitivity

The Transitivity Phenomenon

B

A C

Network Embedding Space

𝐷 𝐴, 𝐵 + 𝐷 𝐵, 𝐶 > 𝐷(𝐴, 𝐶)Triangle Inequality:

A close to B, B close to C  → A relatively close to C 

However, real network data is complex…

57



Non-transitivity 
The Co-existence of Transitivity and Non-transitivity 

Colleague

Social network

Word network

Apple

Cellphone Banana

A
dog
lawn

B
cat

lawn
C

cat
floor

Classmate

Image network

How to incorporate non-transitivity in the embedding space?

58



B

A C

Forward Transitive

Backward 

Transitive

Directed Network

Forward

Backward

A→B, B → C => A → C, but not C →A

Distance metric in the embedding space is symmetric.

How to incorporate Asymmetric Transitivity?

Tencent Microblog Twitter

Asymmetric Transitivity

59



Non-transitivity
The source of non-transitivity:

Each node has multiple similarity components

Object SC Scene SCA
dog
lawn

B
cat

lawn
C

cat
floor

B1
cat

A1
dog

C1
cat

A2
lawn

C2
floor

B2
lawn

Non-transitive Transitive Transitive

Non-transitive Embedding: represent non-transitive data

with multiple latent similarity components

M. Ou, et al. Non-transitive Hashing with Latent Similarity Components. KDD, 2015.

60



Asymmetric Transitivity

All existing methods fail..

Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, Wenwu Zhu. Asymmetric Transitivity Preserving Graph Embedding. KDD, 2016.

B

A C

Asymmetric fails

Transitivity fails

61



Section Summary
 Compared with network structures, network properties have a large 

space to explore in network embedding

 Transitivity is important for network inference.

 Uncertainty provides evidence in making network inference.

 Many other property issues:

 The right embedding space: Euclidean space?

 Power-law distribution

 …

62



Outline

• Structure-preserved network embedding

• Property-preserved network embedding

• Dynamic network embedding

63



 Networks are dynamic in nature

 New (old) nodes are added (deleted) 

 New users, products, etc.

 The edges between nodes evolve over time

 Users add or delete friends in social networks, or neurons establish new 

connections in brain networks.

 How to efficiently incorporate the dynamic changes when networks 

evolve?

Dynamic Networks

64



• I  : Out-of-sample nodes

• II : Incremental edges

• III: Aggregated error

• IV: Scalable optimization

Key problems in dynamic network embedding

65



 High-order proximity

 Critical structural property of networks

 Measure indirect relationship between nodes

 Capture the structure of networks with 

different scales and sparsity

Network Embedding vs. Traditional Graph Embedding

Challenge: High-order Proximity

66



Challenge: High-order Proximity

I  : Out-of-sample nodes

II : Incremental edges 

III: Aggregated error

IV: Scalable optimization

Preserve High-order Proximities

Local Change leads to Global Updating

67



• I  : Out-of-sample nodes

• II : Incremental edges

• III: Aggregated error

• IV: Scalable optimization

Key problems in dynamic network embedding

68



Problem

 To infer embeddings for out-of-sample nodes

 G=(V, E) evolves into G’=(V’, E’),  where V’ = V ∪ V*.

 n old nodes: V = {𝑣1,…,𝑣𝑛},  m new nodes: V* = {𝑣𝑛+1,…,𝑣𝑛+𝑚}

 Network embedding 𝑓: 𝑉 → ℝ𝑑

 We know 𝑓(𝑉) for old nodes, want to infer 𝑓(𝑉′) for new nodes.

69



Challenges

 Preserve network structures

 E.g., high-order proximity

 Need to incorporate prior knowledge on networks

 Share similar characteristics with in-sample embeddings

 E.g. magnitude, mean, variance

 Requires a model with great expressive power to fit the data well

 Low computational cost

Jianxin Ma, et al. DepthLGP: Learning Embeddings of Out-of-Sample Nodes in Dynamic Networks. AAAI, 2018.

70



DepthLGP
 Nonparametric probabilistic modeling + Deep Learning

Jianxin Ma, et al. DepthLGP: Learning Embeddings of Out-of-Sample Nodes in Dynamic Networks. AAAI, 2018.

71



Design a kernel for the kth (k=1,…,s) dimension of h(∙)

DepthLGP

1The matrix inversion can be bypassed without approximation.
2a(k)

v indicates how much attention we pay to a node. It is learned for an in-

sample node, but fixed to one for an out-of-sample node, as we are always 

interested in out-of-sample nodes.

First-order Proximity

Node Weights
(to prune uninformative nodes)

Second-order Proximity

72



Experimental Results: Classification

Jianxin Ma, et al. DepthLGP: Learning Embeddings of Out-of-Sample Nodes in Dynamic Networks. AAAI, 2018.

73



• I  : Out-of-sample nodes

• II : Incremental edges

• III: Aggregated error

• IV: Scalable optimization

Key problems in dynamic network embedding

74



A0
U0 V0∑0

𝑆𝑉𝐷

A1 U1’ V1’∑1’

At Ut’ Vt’∑t’≈

…
⇒

𝑈𝑝𝑑𝑎𝑡𝑒

⇒
𝑈𝑝𝑑𝑎𝑡𝑒

≈

 Problem: error accumulation is inevitable

Error 

Accumulation!

Problem: Error Accumulation
 Eigen perturbation is at the cost of inducing approximation

75



A0
U0 V0∑0

𝑆𝑉𝐷

U1’ V1’∑1’

Ut
Vt∑t

…

⇒

𝑈𝑝𝑑𝑎𝑡𝑒

⇒
𝑈𝑝𝑑𝑎𝑡𝑒

 What are the appropriate time points?

 Too early restarts: waste of computation resources

 Too late restarts: serious error accumulation

A1

At

At+1
Ut+1’ Vt+1’∑t+1’

𝑆𝑉𝐷
Restart

When?

Solution: SVD Restarts
 Solution: restart SVD occasionally

76



 Naïve solution: fixed time interval or fixed number of changes

 Difficulty: error accumulation is not uniform

Naïve Solution

Ziwei Zhang, et al. TIMERS: Error-Bounded SVD Restart on Dynamic Networks. AAAI, 2018.

77



 Existing method: monitor loss (Chen and Candan, KDD 2014)

 Loss in SVD:

𝒥 = 𝑆 − 𝑈Σ𝑉𝑇 𝐹
2

𝑆: target matrix, 𝑈, Σ, 𝑉 : results of SVD

 Problem: loss includes approximation error and intrinsic loss in SVD

Existing Method

Ziwei Zhang, et al. TIMERS: Error-Bounded SVD Restart on Dynamic Networks. AAAI, 2018.

78



 Observation: the margin between the current loss and the intrinsic

loss in SVD is the actual accumulated error

 Current loss: 𝒥 = 𝑆 − 𝑈Σ𝑉𝑇 𝐹
2

 Intrinsic loss: ℒ 𝑆, 𝑘 = min
𝑈∗,Σ∗,𝑉∗

𝑆 − 𝑈∗Σ∗𝑉∗𝑇
𝐹

2
, 𝑘: 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦

Framework: Monitor Margin

Ziwei Zhang, et al. TIMERS: Error-Bounded SVD Restart on Dynamic Networks. AAAI, 2018.

79



 Lazy restarts: restart only when the margin exceeds the threshold

 Problem: intrinsic loss is hard to compute

 Direct calculation has the same time complexity as SVD

 Relaxation: an upper bound on margin

 A lower bound on intrinsic loss ℒ(𝑆,𝑘)

𝒥(𝑡): current loss; ℒ(𝑆_𝑡,𝑘): intrinsic loss; 𝐵(𝑡): bound of intrinsic loss

Solution: Lazy Restarts

Ziwei Zhang, et al. TIMERS: Error-Bounded SVD Restart on Dynamic Networks. AAAI, 2018.

80



 Idea: use matrix perturbation

 Intuition: treat changes as a perturbation to the original network

A Lower Bound of SVD Intrinsic Loss 

Ziwei Zhang, et al. TIMERS: Error-Bounded SVD Restart on Dynamic Networks. AAAI, 2018.

81



 Conclusion: the complexity is only linear to the local dynamic changes

Time Complexity Analysis

Ziwei Zhang, et al. TIMERS: Error-Bounded SVD Restart on Dynamic Networks. AAAI, 2018.

82



 Fixing number of restarts

 Fixing maximum error

-50%

27%~42% Improvement

Experimental Results: Approximation Error

Ziwei Zhang, et al. TIMERS: Error-Bounded SVD Restart on Dynamic Networks. AAAI, 2018.

83



Section Summary
• I  : Out-of-sample nodes

• DepthLGP = Non-parametric GP + DNN

• II : Incremental edges 

• DHPE: Generalized Eigen Perturbation 

• III: Aggregated error

• TIMERS: A theoretically guaranteed SVD restart strategy

• IV: Scalable optimization

• D-SGD: A iteration-wise weighted SGD for highly dynamic data

84



Recap: Network Embedding

• Structure-preserved network embedding

• Property-preserved network embedding

• Dynamic network embedding

85



86

Learning from networks

GNN



Graph Neural Networks

G = ( V, E )

Can we design a learning mechanism to directly work on graphs?

?



88

 Basic idea: a recursive definition of states

 A simple example: PageRank

The First Graph Neural Network

F. Scarselli, et al. The graph neural network model. IEEE TNN, 2009.



89

Many GNNs have emerged since then

Picture credit to Thomas Kipf



90

How are GNNs compared with other NNs?

Picture credit to GraphSAGE (NIPS 17), PATCHY-SAN (ICML 16)

 Capture information from graph 

neighborhoods

 Capture information from nearby 

grids (i.e., a 2-D graph)

 Capture information from contexts

(i.e., a 1-D graph)

We need to exchange information within neighborhoods 



 Formulation:

 h𝑖
(𝑙)

: representation of node 𝑣𝑖 in the 𝑙𝑡ℎ layer

 m𝑖
(𝑙): messages for node 𝑣𝑖 in the 𝑙𝑡ℎ layer by aggregating neighbor representations

Message-passing Framework

J. Gilmer, et al. Neural message passing for quantum chemistry. ICML, 2017.

W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs. NIPS, 2017.



 Main idea: averaging messages from direct neighborhoods

 Stacking multiple layers like standard CNNs:

 State-of-the-art results on node classification

92

Graph Convolutional Networks (GCN)

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. ICLR, 2017.



93

 Some expected properties of GNNs:

 Trained end-to-end for downstream tasks

 Vs. network embedding: unsupervised representation learning to handle various tasks

 Utilize node features and graph structures simultaneously

 A deep learning model

 Can handle real applications with data represented as graphs

Expected Properties of GNNs

G = ( V, E )

Are existing 

GNNs good 

enough? 



Outline

94

 Does GNN fuse feature and topology optimally?

 Is GNN really a deep model?

 Technical challenges in real applications: robustness, 

explainability and applicability



Outline

95

 Does GNN fuse feature and topology optimally?

 Is GNN really a deep model?

 Technical challenges in real applications: robustness, 

explainability and applicability



The intrinsic problem GCN is solving

96

Fusing topology and features in the way of smoothing features with 

the assistance of topology with a deep model.

N

N

N

d

N

d

X =

Revisiting Graph Neural Networks All We Have is Low-Pass Filters, arXiv 1905.09550

Understanding the Representation Power of Graph Neural Networks in Learning Graph Topology, NeurIPS 2019



 When feature plays the key role, GNN performs good

 How about the contrary?

 Synthesis data: stochastic block model + random features

 DeepWalk greatly outperforms all the GCNs

 Recall the message-passing framework

 Initial node features provide important inductive bias!

97

Can GNNs Fully Preserve Graph Structures?

Method Results

Random 10.0

GCN-1 29.7

GCN-2 48.4

GCN-3 56.2

GCN-5 53.3

DeepWalk 99.9

Initialized as node features

Graph structures only provide 

neighborhoods in aggregation

GCN-X: X number of layers



 Theoretical analysis: node features as “true signal”, GNNs as a low-pass filtering

 Simplified GCN[1]: removing all non-linearity

𝐻 𝑙 = 𝑆𝑙𝐻 0

𝑆 = ෩𝐷−1/2 ሚ𝐴෩𝐷−1/2 = 𝐼 − ෨𝐿𝑆𝑦𝑚
 From graph signal processing, 𝑓′ = 𝑆𝑙𝑓 corresponds to a spectral filter [2]

𝑔 𝜆 = 1 − መ𝜆
𝑙

 Thus GNNs are inevitably feature-centric

 More recent results on learning graph moments [3]:

 Graph moment: similar to high-order proximities in network embedding

98

1. Simplifying Graph Convolutional Networks, ICML 2019

2. Revisiting Graph Neural Networks All We Have is Low-Pass Filters, arXiv 1905.09550

3. Understanding the Representation Power of Graph Neural Networks in Learning Graph Topology, NeurIPS 2019

Can GNNs Fully Preserve Graph Structures?



 How can we empower GNNs to preserve graph structures well? 

 A new perspective: treating GNNs as a type of (non-linear) dimensionality reduction

 A slightly modified framework:

 Three-steps

(1) Projecting graph structures into a subspace spanned by node representations in the last step

(2) The projected representations are linearly transformed followed by a non-linear mapping

(3) Repeat the process by using the new node representations as bases

 Why are the existing GNNs feature-centric? 

→ The initial space is solely determined by node features!

99

A New Perspective to Understand GNNs

Ziwei Zhang, Peng Cui, Jian Pei, Xin Wang, Wenwu Zhu. Eigen-GNN: A Graph Structure Preserving Plug-in for GNNs. arXiv, 2006.04330.  

Graph structures Previous bases Linear transform

Non-linear mapping



 Framework

X: node features; Q: top-d eigenvector of a graph structure matrix; 𝑓 ⋅ : a simple function such as normalization

 Experimental results:

Node classification                                       Link Prediction                              Graph Isomorphism Test

100

Eigen-GNN: A Graph Structure Preserving Plug-in

Ziwei Zhang, Peng Cui, Jian Pei, Xin Wang, Wenwu Zhu. Eigen-GNN: A Graph Structure Preserving Plug-in for GNNs. arXiv, 2006.04330.  



101

 Though GNNs have a feature-driven mechanism, can they preserve node features well?

 Reason: the neighborhood only depends on structures (i.e., not depend on features)

 How to find the most suitable neighborhoods adaptively?

Can GNNs Fully Preserve Node Features?

Random topology Correlated Features 

MLP> GCN

Case 2

Correlated Topology Random Features 

Case 1

DeepWalk > GCN

GNNs also fail in preserving node features!



102

Adaptive Multi-channel GCN

Specific Convolution Module

 Topology Graph

 Feature Graph

Xiao Wang, Meiqi Zhu, Deyu Bo, Peng Cui, Chuan Shi, Jian Pei. AM-GCN: Adaptive Multi-

channel Graph Convolutional Networks. KDD, 2020.



103

Common Convolution Module

 Topology Graph

 Feature Graph

 Parameter Sharing

 Common Embedding

Adaptive Multi-channel GCN

Xiao Wang, Meiqi Zhu, Deyu Bo, Peng Cui, Chuan Shi, Jian Pei. AM-GCN: Adaptive Multi-

channel Graph Convolutional Networks. KDD, 2020.



104

Attention Mechanism

 How to Calculate 

Adaptive Multi-channel GCN

Xiao Wang, Meiqi Zhu, Deyu Bo, Peng Cui, Chuan Shi, Jian Pei. AM-GCN: Adaptive Multi-

channel Graph Convolutional Networks. KDD, 2020.



105

Experimental Results

Xiao Wang, Meiqi Zhu, Deyu Bo, Peng Cui, Chuan Shi, Jian Pei. AM-GCN: Adaptive Multi-

channel Graph Convolutional Networks. KDD, 2020.



106

Permutation-equivariance of GNNs
 Permutation-equivariance property

 If we randomly permute the IDs of nodes while maintaining the graph structure, the 

representations of nodes in GNNs should be permuted accordingly

 Pros:

 Guarantees that the embeddings of automorphic nodes are identical

 Automatically generalize to all the 𝑂(𝑁!) permutations when training with only one 

permutation

 Most of the existing message-passing GNNs satisfy permutation-equivariance

Permutation-equivariant Node Embeddings

9

4

3

1

2
5

8

7

6
13

15

16

17
14

12

11

10



107

Permutation-equivariance vs. Proximity-aware
 However, permutation-equivariance and proximity-aware are conflicting

Position-aware graph neural networks. ICML 2019.

On the Equivalence between Positional Node Embeddings and Structural Graph Representations. ICLR 2020. 

They are structurally equivalent

But there is no proximity

Permutation-equivariant 

Node Embeddings
Proximity-preserving

Node Embeddings

Conflicting



108

Unique Node Identifiers
 The key problem is that nodes cannot differentiate each other

 Theoretical analysis: unique node identifiers are one necessary condition 

for GNNs to be universal approximation

What graph neural networks cannot learn depth vs width, ICLR 2020  



109

Stochastic Message Passing (SMP)
 Assign stochastic features as node identifiers

 Gaussian features: associate with random projection literature

 A dual GNN architecture: 

Ziwei Zhang, Chenhao Niu, Peng Cui, et al. A Simple and General Graph Neural Network with Stochastic Message Passing. arXiv, 2009.02562.  



110

Theoretical Guarantee 
 SMP can preserve node proximities

 SMP can recover the existing permutation-equivariant GNNs

 An adaptive GNN that maintains both proximity-awareness and 

permutation-equivariance

Ziwei Zhang, Chenhao Niu, Peng Cui, et al. A Simple and General Graph Neural Network with Stochastic Message Passing. arXiv, 2009.02562.  



Experimental Results

111

Superior performance when 

the task is proximity-related 

Comparable performance 

when permutation-equivariant 

is helpful

Ziwei Zhang, Chenhao Niu, Peng Cui, et al. A Simple and General Graph Neural Network with Stochastic Message Passing. arXiv, 2009.02562.  



Outline

112

 Does GNN fuse feature and topology optimally?

 Is GNN really a deep model?

 Technical challenges in real applications: robustness, 

explainability and applicability



113

Is GNN really a deep model?

 Though GNNs are motivated as “deep learning”, most models only adopt 2-3 layers

 Possible reasons: 

 Difficulties in training deep networks, e.g., over-fitting, vanishing gradients

 Over-smoothing, i.e. all nodes have similar representations in deeper layers

Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017.

Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning, AAAI 2018.

Graph Neural Networks Exponentially Lose Expressive Power for Node Classification, ICLR 2020.



 State-of-the-art CNNs can have hundreds of layers, e.g., ResNet, DenseNet

 Can we mimic them and use similar ideas to develop GNNs?

 Residual connections, dense connections, and dilated aggregation

114

DeepGCNs: Can GCNs Go as Deep as CNNs? ICCV 2019

Is GNN really a deep model?



 How to prevent node embedding from 

being similar? 

→ Make total pairwise feature distances 

remained a constant across layers

 Design specific dropout to graph data

→ Randomly drop edges in each epoch

 Theoretical insights: 

 A data augmentation technique

 A message passing reducer

115

More Recent Approaches

DropEdge: Towards Deep Graph Convolutional Networks 

on Node Classification, ICLR 2020
PairNorm: Tackling Oversmoothing in GNNs, ICLR 2020



 How to train real deep GNNs is still an on-going research topic 

 DeepGCNs, DropEdge, PairNorm 

 Many more:
 Measuring and Relieving the Over-smoothing Problem for Graph Neural Networks from the 

Topological View, AAAI 2020

 Towards Deeper Graph Neural Networks, KDD 2020

 What graph neural networks cannot learn: depth vs width, ICLR 2020

 Simple and deep GNN, ICML 2020

 Bayesian Graph Neural Networks with Adaptive Connection Sampling, ICML 2020

 An Anatomy of Graph Neural Networks Going Deep via the Lens of Mutual Information: Exponential 

Decay vs. Full Preservation, arXiv 1910.04499

 Revisiting Oversmoothing in Deep GCNs, arXiv 2003.13663

 Towards Deeper Graph Neural Networks with Differentiable Group Normalization, arXiv 2006.06972

 DeeperGCN: All You Need to Train Deeper GCNs, arXiv 2006.07739

 Effective Training Strategies for Deep Graph Neural Networks, arXiv 2006.07107

 Graphs, Entities, and Step Mixture, arXiv 2005.08485

116

A Hot Research Topic



117

Cautious: whether and when GNNs need to go deep?

 Cautious: whether and when do we need deep GNNs?

 A wider neighborhood structure? The extra non-linearity? 

 Recall Simplified GCN[1] formulation:

𝐻 𝑘+1 = 𝑆𝐻 𝑘 𝑊 𝑘 ,

෠𝑌 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑆𝐾𝐻 0 𝑊

 There are also recent theoretical results[2] :

Simplifying graph convolutional networks, ICML 2019

What graph neural networks cannot learn depth vs width, ICLR 2020

High-order proximity



Outline

118

 Does GNN fuse feature and topology optimally?

 Is GNN really a deep model?

 Technical challenges in real applications: robustness, 

explainability and applicability



Technical challenges in real applications

Research Application

Robustness Interpretability Applicability

Hot directions in computer vision:

Adversarial Explainable Scalable

119



Robustness in GNNs
 Adversarial attacks

 Small perturbations in graph structures and node attributes

 Great challenges for applying GNNs to node classification

120

Adversarial Attacks on Neural Networks for Graph Data, KDD 2018



Adversarial Attacks on GNNs
 Categories

 Targeted vs. Non-targeted

 Targeted: the attacker focus on misclassifying some target nodes

 Non-targeted: the attacker aims to reduce the overall model performance

 Direct vs. Influence

 Direct: the attacker can directly manipulate the edges/features of the target nodes

 Influence: the attacker can only manipulate other nodes except the targets

 Attacker knowledge:

121

Settings Parameters Predictions Labels Training Input

White-Box Attack (WBA) ✓ ✓ ✓ ✓

Practical White-box Attack (PWA) ✓ ✓ ✓

Restrict Black-box Attack (RBA) ✓



Heng Chang, Yu Rong, Tingyang Xu, Wenbing Huang, Honglei Zhang, Peng Cui, Wenwu Zhu, Junzhou Huang

A Restricted Black-box Adversarial Framework Towards Attacking Graph Embedding Models. AAAI, 2020.

 Understand the various graph embedding model from a new general Graph Signal 
Processing (GSP) perspective.

 An adversarial framework, GF-Attack, is proposed accordingly to perform attacks 
though graph filters in a RBA fashion.

GF-Attack: Restrict Black-box Attack for Graphs



Heng Chang, Yu Rong, Tingyang Xu, Wenbing Huang, Honglei Zhang, Peng Cui, Wenwu Zhu, Junzhou Huang

A Restricted Black-box Adversarial Framework Towards Attacking Graph Embedding Models. AAAI, 2020.

GF-Attack: Restrict Black-box Attack for Graphs
 Core idea: constructing the attack damage measuring by attacking the graph filter ℋ
 Measuring the quality of output embedding 𝑍 as the 𝑇-rank approximation problem:

 Equivalent to optimize:

 GCN/SGC as Example: rewrite the GCN/SGC with 𝑆 = 2𝐼𝑛 − 𝐿𝑠𝑦𝑚:

 The corresponding adversarial attack loss for 𝐾𝑡ℎ order GCN/SGC is constructed as:

 A linear time approximation via eigenvalue perturbation theory is used

𝜆𝑖 and 𝒖𝑖 are an eigen-
pair of graph filter ℋ.



Robust Graph Convolutional Networks
 How to enhance the robustness of GNNs against adversarial attacks?

 Adversarial attacks in node classification

 Connect nodes from different communities to confuse the classifier

 Distribution vs. plain vectors

 Plain vectors cannot adapt to such changes

 Variances can help to absorb the effects of adversarial changes

 Gaussian distributions → Hidden representations of nodes

Dingyuan Zhu, Ziwei Zhang, Peng Cui, Wenwu Zhu. Robust Graph Convolutional Networks Against Adversarial Attacks. KDD, 2019.

124



The Framework of RGCN

Gaussian based representations: 

variance terms absorb the effects of 

adversarial attacks

Attention mechanism:

Remedy the propagation 

of adversarial attacks

Sampling process: explicitly 

considers mathematical relevance 

between means and variances 

125

Dingyuan Zhu, Ziwei Zhang, Peng Cui, Wenwu Zhu. Robust Graph Convolutional Networks Against Adversarial Attacks. KDD, 2019.



Experimental Results
 Node Classification on Clean Datasets

 Against Non-targeted Adversarial Attacks

126

Dingyuan Zhu, Ziwei Zhang, Peng Cui, Wenwu Zhu. Robust Graph Convolutional Networks Against Adversarial Attacks. KDD, 2019.



Interpretability of GNNs

 A real-world graph is typically formed due to many latent factors.

Social Circles

 Existing GNNs/GCNs: 

 A holistic approach, that takes in the 

whole neighborhood to produce a 

single node representation

 We suggest:

 To disentangle the latent factors 
(By segmenting the heterogeneous parts, and learning 

multiple factor-specific representations for a node)

 Robustness (e.g., not overreact to an irrelevant factor) 

& Interpretability

127



Disentangled Representation Learning
 That is, we aim to learn disentangled node representations

 A representation that contains independent components, that describes 

different aspects (caused by different latent factors) of the observation

 The topic is well studied in the field of computer vision

 But largely unexplored in the literature of GNNs.

Example: Three dimensions that are related skin color, age/gender, and saturation, respectively.

128



Method Overview
 We present DisenGCN, the disentangled graph convolutional network

 DisenConv, a disentangled multichannel convolutional layer (figure below)

 Each channel convolutes features related with a single latent factor

Jianxin Ma, Peng Cui, Kun Kuang, Xin Wang, Wenwu Zhu. Disentangled Graph Convolutional Networks. ICML, 2019.

129



Results: Multi-label Classification

130

Jianxin Ma, Peng Cui, Kun Kuang, Xin Wang, Wenwu Zhu. Disentangled Graph Convolutional Networks. ICML, 2019.



Results: On Synthetic Graphs

 Improvement is larger when #factors is relatively large (around 8)

131

Jianxin Ma, Peng Cui, Kun Kuang, Xin Wang, Wenwu Zhu. Disentangled Graph Convolutional Networks. ICML, 2019.



Results: Correlations between the Neurons

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
3

0
3

1
3

2
3

3
3

4
3

5
3

6
3

7
3

8
3

9
4

0
4

1
4

2
4

3
4

4
4

5
4

6
4

7
4

8
4

9
5

0
5

1
5

2
5

3
5

4
5

5
5

6
5

7
5

8
5

9
6

0
6

1
6

2
6

3
6

4

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
3

0
3

1
3

2
3

3
3

4
3

5
3

6
3

7
3

8
3

9
4

0
4

1
4

2
4

3
4

4
4

5
4

6
4

7
4

8
4

9
5

0
5

1
5

2
5

3
5

4
5

5
5

6
5

7
5

8
5

9
6

0
6

1
6

2
6

3
6

4

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

132

Jianxin Ma, Peng Cui, Kun Kuang, Xin Wang, Wenwu Zhu. Disentangled Graph Convolutional Networks. ICML, 2019.



Applicability of GNNs/Network embedding

1 2
6

3

4

57 8
B

A C

High-order

Transitivity Global position

Link Prediction

Community Detection

Node Classification

Network Distance

Node Importance

…

Various network properties Various applications

 Leading to a large number of hyper-parameters

Must be carefully tuned
AutoML

133



AutoML

 Ease the adoption of machine learning and reduce the reliance on 

human experts

 E.g., hyper-parameter optimization, neural architecture search

 Largely unexplored on graph/network data

 Large-scale issue:

 Complexity of GNNs/Network Embedding is usually at least  O 𝐸

 E is the number of edges (can be 10 billion)

 Total complexity: O 𝐸𝑇 , T is the times searching for optimal hyperparameters

How to incorporate AutoML into massive GNNs efficiently? 

134



AutoML for GNN/Network embedding

 A straightforward way: configuration selection on sampled sub-networks

 Transferability

 𝜃 ≠ optimal configuration on the origin network

 Heterogeneity

 Several highly heterogeneous components → needs carefully designed sampling 

Ke Tu, Jianxin Ma, Peng Cui, Jian Pei, Wenwu Zhu. AutoNE: Hyperparameter Optimization for Massive Network Embedding. KDD, 2019.

135



AutoNE

Transfer the knowledge about optimal hyperparameters from 

the sub-networks to the original massive network

136

Ke Tu, Jianxin Ma, Peng Cui, Jian Pei, Wenwu Zhu. AutoNE: Hyperparameter Optimization for Massive Network Embedding. KDD, 2019.



Experiments: Sampling-Based NE

The performance achieved within various time thresholds.

The number of trials to reach a certain performance threshold

137

Ke Tu, Jianxin Ma, Peng Cui, Jian Pei, Wenwu Zhu. AutoNE: Hyperparameter Optimization for Massive Network Embedding. KDD, 2019.



Recap: Graph Neural Networks

138

 Message-passing framework of GNNs

 Frontiers:

 Does GNN fuse feature and topology optimally?

 Is GNN really a deep model?

 Technical challenges in real applications: robustness, 

explainability and applicability



139

Summaries and Conclusions

 Unsupervised vs. (Semi-)Supervised

 Learning for Networks vs. Learning via Graphs

 Topology-driven vs. Feature-driven

 Both GNN and NE need to treat the counterpart as the baselines



A Survey on Network Embedding

Peng Cui, Xiao Wang, Jian Pei, Wenwu Zhu. A Survey on Network 

Embedding. IEEE TKDE, 2018.



Deep Learning on Graphs: A Survey

Ziwei Zhang, Peng Cui, Wenwu Zhu. Deep Learning on Graphs: 

A Survey. IEEE TKDE, 2020.



Thanks!

Peng Cui

cuip@tsinghua.edu.cn

http://pengcui.thumedialab.com

142


