



# AutoGraph Challenge Solution -- KDD Cup 2020 AutoML Track

**SmartMN-THU** 

Ke Tu, Ziwei Zhang, Dingyuan Zhu, Zeyang Zhang, Xin Wang Tsinghua University

Advisor: Prof. Wenwu Zhu Tsinghua University

Code: https://github.com/AutoGraphMaNlab/AutoGraph

## **Graphs are Ubiquitous**



**Social Network** 



**Biology Network** 



Traffic Network

You can skip to page 8 if you are familiar with the competition!

## Network Embedding: Vector Representation of Nodes



- DeepWalk (KDD, 2014)
- ☐ LINE (WWW, 2015)
- Node2vec (KDD, 2016)
- SDNE (KDD, 2016)
- HOPE (KDD, 2016)

. . .

A Survey on Network Embedding. *IEEE TKDE*, 2018.

| Title / Author                                                                                                                                                                                                        | Cited by    | Year |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------|
| XGBoost: A Scalable Tree Boosting System T Chen, C Guestrin Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge                                                                                  | 2832        | 2016 |
| DeepWalk: online learning of social representations B Perozzi, R Al-Rfou, S Skiena Proceedings of the 20th ACM SIGKDD international conference on Knowledge                                                           | <u>1818</u> | 2014 |
| node2vec: Scalable Feature Learning for Networks A Grover, J Leskovec Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge                                                                        | <u>1622</u> | 2016 |
| Why Should I Trust You?: Explaining the Predictions of Any Classifier MT Ribeiro, S Singh, C Guestrin Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge                                        | <u>1528</u> | 2016 |
| Knowledge vault: a web-scale approach to probabilistic knowledge fusion X Dong, E Gabrilovich, G Heitz, W Hom, N Lao, K Murphy, T Strohmann, Proceedings of the 20th ACM SIGKDD international conference on Knowledge | 904         | 2014 |
| Collaborative Deep Learning for Recommender Systems H Wang, N Wang, DY Yeung Proceedings of the 21th ACM SIGKDD International Conference on Knowledge                                                                 | <u>626</u>  | 2015 |
| Structural Deep Network Embedding D Wang, P Cui, W Zhu Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge                                                                                       | <u>563</u>  | 2016 |

#### **Graph Neural Networks**



Picture credit to Thomas Kipf.

- □ Spectral GCN (ICLR, 2014)
- □ ChebNet (NeurIPS 2016)
- □ GCN (ICLR, 2017)
- □ GraphSAGE (NeurIPS, 2017)
- ☐ GAT (ICLR, 2018)

Deep Learning on Graphs, A Survey. *IEEE TKDE*, 2020.

Network Embedding Deep Reinforcement Learning

Conversational Recommender System Deep Learning Model Attention Network

Righ-order Interaction Case Study Representation Learning Deep Learning Reinforcement Learning

Large Scale

Multi-label Learning
User Engagement
Neural Network

Deep Neural Network Heterogeneou Graph Generative Model

Recommender System Convolutional Network

Meta Learning

Deep Convolutional Neural Network

KDD 20 Keywords

### However, human efforts are still needed...



□ Different tasks and different datasets may be completed different!

#### **AutoML**



Design ML methods → Design AutoML methods

## **AutoGraph: KDD Cup 2020 AutoML Track**

- Task: node classification
- 15 datasets: 5 for training, 5 for validation, and 5 for final testing
  - Validation/testing datasets are not accessible to participants
  - The AutoML algorithm should automatically handle them!
  - Leaderboard on validation and no any feedback on final testing
- Different graph types: directed/undirected, weighted/unweighted, with/without node features...
- Time budget

https://www.4paradigm.com/competition/kddcup2020

https://www.automl.ai/competitions/3

#### **Framework**



## **Preprocessing**

- □ Graph structure
  - Whether graph is directed/undirected, weighted/unweighted, signed/unsigned
- Node features
  - Drop constant features
  - Drop one-hot encoding of node-IDs
- Node labels
  - Whether the training labels are balanced

## **Feature Engineering (1)**

- Selection of original features
  - Select up to top 2,000 important features by LightGBM [1]
- □ Feature Generation
  - □ Eigen-GNN [2]
  - □ In/out degree (one-hot encodings)
  - Other methods tried
    - PageRank
    - □ Graphlets [3]
    - □ GDC [4]
    - □ DeepFM [5]
    - DeepWalk
- [1] https://lightgbm.readthedocs.io/en/latest/
- [2] Ziwei Zhang, et al., Eigen-GNN: A Graph Structure Preserving Plug-in for GNNs. arXiv, 2006.04330.
- [3] Network motifs: simple building blocks of complex networks, Science 2002.
- [4] Diffusion Improves Graph Learning, NeurIPS 2019.
- [5] DeepFM: A Factorization-Machine based Neural Network for CTR Prediction, IJCAI 2017.

## **Feature Engineering (2)**

- Modeling the interactions among node features
- □ DeepGL [1]:
  - □ Feature Generation Aggregators: sum, mean, max, min
  - □ Feature Selection
    - Lightgbm
    - □ Other methods tried: connected components
  - □ Procedure
    - □ Generate features per aggregator
    - Select top K=200 important features for concatenation and future generation
    - Repeat N=5 times

Feature engineering is more important if no node feature is available

[1] Deep Inductive Graph Representation Learning, TKDE 2018.

#### Model

- □ GCN: incorporate graph topology and node attributes, trained end-to-end
- Additional "tricks":
  - Jumping connections [1]: aggregate information from different layers
  - Batch normalization: shown empirically to be important [2]
- Have tried other methods:
  - □ GAT: slightly better results, but much more time consuming, e.g. 5x time
    - Better results when allocating these time budgets to HPO + ensemble
  - □ GraphSAGE: similar results with GCN
  - □ GIN: similar results with GCN
  - □ Tried other tricks such as residual connections [3] or removing non-linearity [4], but not observing consistent improvements
  - [1] Representation Learning on Graphs with Jumping Knowledge Networks, ICML 2018.
  - [2] Benchmarking Graph Neural Networks, arXiv 2003.00982.
  - [3] Predict then Propagate: Graph Neural Networks meet Personalized PageRank, ICLR 2019.
  - [4] Simplifying Graph Convolutional Networks, ICML 2019.

## **Hyper-Parameter Optimization (HPO)**

- □ Search hyper-parameters for 20 times (if there is enough time)
  - Each time we re-split the datasets into training and validation
  - □ Each time we search 5 group of hyper-parameters and choose the best one
- □ Consider some model choices as hyper-parameters
  - E.g. the jumping connection function
- HPO method: Tree Parzen Estimation [1]
  - Better compatibility with discrete hyper-parameters compared to Gaussian Process Regression used in [2]

<sup>[1]</sup> Algorithms for hyper-parameter optimization. NIPS 2011.

<sup>[2]</sup> Ke Tu, et al. AutoNE: Hyperparameter Optimization for Massive Network Representation Learning. KDD, 2019.

## **Hyper-parameters and Their Ranges**

- We manually set the default hyper-parameters and their search ranges
  - Number of GCN layers: {1,2}, default 2
  - □ Hidden size in the first layer: [8, 128], default 64
  - □ Hidden size in the second layer: [8, 64], default 32
  - □ Dropout rate: [0.1, 0.9], default 0.5
  - □ Learning rate: [1e-4,1e0], default 0.005
  - Number of epochs: [100, 300], default 300
  - Weight decay: [1e-4, 1e-1], default 5e-4
  - □ Jumping connection function: {sum, concat, none}, default concat
- Empirically, we find that the most important hyper-parameters are number of layers, learning rate, and jumping connection function

#### **Ensemble**

- □ A simple voting-like method:
  - □ Sort the models by their accuracies (on the validation set)
  - □ Filter models showing significantly poor results
    - Make sure that the variance of top models are smaller than a threshold
  - □ Compute the weighted sum of the predicted probabilities as final results
- Important in getting stable predictions

## **Global Time Budget Control**

- □ Goal of the global timer: ensure valid results and estimate running time
- Stop and return results whenever the remaining time < 5 seconds</p>
- Control the time used in feature engineer
  - □ Stop generating features when it had cost 1/3 budget to save time for models
  - ☐ If the number of edges is too large, does not run EigenGNN
- Estimate the time of training one model to better allocate resources

#### **Further Discussions**

- AutoML algorithms may also suffer from over-fitting
  - E.g., only focusing on getting better results on the validation set
  - We prepare a dozen off-line datasets for additional validation (all publicly datasets from PyTorch Geometric)
- Why not doing Neural Architecture Search (NAS):
  - □ Time budget
  - Most existing GCN architectures are relatively simple
    - □ E.g., the number of layers is usually no more than 2 due to over-smoothing
- Another strategy we tried but not worked: use network embedding methods to extract topology features, concatenate with node features, and adopt a non-linear classifier (e.g., LightGBM)

#### Results

#### **Validation**

| 1  | supergx     | 3.2  |
|----|-------------|------|
| 2  | daydayup    | 4.8  |
| 3  | common      | 5.0  |
| 4  | qqerret     | 5.8  |
| 5  | SmartMN-THU | 7.2  |
| 6  | shiqitao    | 7.4  |
| 7  | JunweiSun   | 7.8  |
| 8  | aister      | 9.0  |
| 9  | Qitian      | 10.2 |
| 10 | PostDawn    | 10.8 |
| 11 | Alpha       | 13.4 |
| 12 | PASA_NJU    | 14.4 |

#### **Test**

| 1  | aister      | 4.8  |
|----|-------------|------|
| 2  | PASA_NJU    | 5.2  |
| 3  | qqerret     | 5.4  |
| 4  | common      | 6.6  |
| 5  | PostDawn    | 7.4  |
| 6  | SmartMN-THU | 7.8  |
| 7  | JunweiSun   | 7.8  |
| 8  | u1234x1234  | 9.2  |
| 9  | shiqitao    | 9.6  |
| 10 | supergx     | 11.8 |
| 9  | shiqitao    | 9.6  |



## Thanks!

Ziwei Zhang, Tsinghua University zw-zhang16@mails.tsinghua.edu.cn

https://zw-zhang.github.io/

https://github.com/AutoGraphMaNlab/AutoGraph

