
AutoGraph Challenge Solution
-- KDD Cup 2020 AutoML Track

SmartMN-THU

Ke Tu, Ziwei Zhang, Dingyuan Zhu, Zeyang Zhang, Xin Wang

Tsinghua University

Advisor: Prof. Wenwu Zhu

Tsinghua University

Code: https://github.com/AutoGraphMaNlab/AutoGraph

https://github.com/AutoGraphMaNlab/AutoGraph

2

Graphs are Ubiquitous

Social Network Biology Network

Traffic Network

You can skip to page 8 if you are familiar with the competition!

3

Network Embedding:
Vector Representation of Nodes

Generate

Embed

 DeepWalk (KDD, 2014)

 LINE (WWW, 2015)

 Node2vec (KDD, 2016)

 SDNE (KDD, 2016)

 HOPE (KDD, 2016)

…

A Survey on Network Embedding.

IEEE TKDE, 2018.

4

Graph Neural Networks

 Spectral GCN (ICLR, 2014)

 ChebNet (NeurIPS 2016)

 GCN (ICLR, 2017)

 GraphSAGE (NeurIPS, 2017)

 GAT (ICLR, 2018)

…

Deep Learning on Graphs, A Survey.

IEEE TKDE, 2020.

ICLR20 Keyword Change

KDD 20 Keywords

Picture credit to Thomas Kipf.

5

However, human efforts are still needed…

Picture credit to CS224W, Stanford University, by Jure Leskovec.

 Different tasks and different datasets may be completed different!

6

AutoML

Picture credit to Microsoft Azure Machine Learning AutoML

Design ML methods → Design AutoML methods

7

AutoGraph: KDD Cup 2020 AutoML Track

https://www.4paradigm.com/competition/kddcup2020

https://www.automl.ai/competitions/3

 Task: node classification

 15 datasets: 5 for training, 5 for validation, and 5 for final testing

 Validation/testing datasets are not accessible to participants

 The AutoML algorithm should automatically handle them!

 Leaderboard on validation and no any feedback on final testing

 Different graph types: directed/undirected, weighted/unweighted,

with/without node features…

 Time budget

https://www.4paradigm.com/competition/kddcup2020
https://www.automl.ai/competitions/3

Framework

8

Preprocessing
Feature

Engineering
Model: GCN

Data

HPO Ensemble

Output

Global Time Budget Control

Preprocessing

 Graph structure

 Whether graph is directed/undirected, weighted/unweighted,

signed/unsigned

 Node features

 Drop constant features

 Drop one-hot encoding of node-IDs

 Node labels

 Whether the training labels are balanced

9

Feature Engineering (1)

 Selection of original features

 Select up to top 2,000 important features by LightGBM [1]

 Feature Generation

 Eigen-GNN [2]

 In/out degree (one-hot encodings)

 Other methods tried

 PageRank

 Graphlets [3]

 GDC [4]

 DeepFM [5]

 DeepWalk

10

[1] https://lightgbm.readthedocs.io/en/latest/

[2] Ziwei Zhang, et al., Eigen-GNN: A Graph Structure Preserving Plug-in for GNNs. arXiv, 2006.04330.

[3] Network motifs: simple building blocks of complex networks, Science 2002.

[4] Diffusion Improves Graph Learning, NeurIPS 2019.

[5] DeepFM: A Factorization-Machine based Neural Network for CTR Prediction, IJCAI 2017.

Feature Engineering (2)

 Modeling the interactions among node features

 DeepGL [1]:

 Feature Generation Aggregators: sum, mean, max, min

 Feature Selection

 Lightgbm

 Other methods tried: connected components

 Procedure

 Generate features per aggregator

 Select top K=200 important features for concatenation and future

generation

 Repeat N=5 times

11

[1] Deep Inductive Graph Representation Learning, TKDE 2018.

Feature engineering is more important if no node feature is available

Model

 GCN: incorporate graph topology and node attributes, trained end-to-end

 Additional “tricks”:

 Jumping connections [1]: aggregate information from different layers

 Batch normalization: shown empirically to be important [2]

 Have tried other methods:

 GAT: slightly better results, but much more time consuming, e.g. 5x time

 Better results when allocating these time budgets to HPO + ensemble

 GraphSAGE: similar results with GCN

 GIN: similar results with GCN

 Tried other tricks such as residual connections [3] or removing non-linearity [4],

but not observing consistent improvements

12

[1] Representation Learning on Graphs with Jumping Knowledge Networks, ICML 2018.

[2] Benchmarking Graph Neural Networks, arXiv 2003.00982.

[3] Predict then Propagate: Graph Neural Networks meet Personalized PageRank, ICLR 2019.

[4] Simplifying Graph Convolutional Networks, ICML 2019.

Hyper-Parameter Optimization (HPO)

 Search hyper-parameters for 20 times (if there is enough time)

 Each time we re-split the datasets into training and validation

 Each time we search 5 group of hyper-parameters and choose the best one

 Consider some model choices as hyper-parameters

 E.g. the jumping connection function

 HPO method: Tree Parzen Estimation [1]

 Better compatibility with discrete hyper-parameters compared to Gaussian

Process Regression used in [2]

13

[1] Algorithms for hyper-parameter optimization. NIPS 2011.

[2] Ke Tu, et al. AutoNE: Hyperparameter Optimization for Massive Network Representation Learning. KDD,

2019.

Hyper-parameters and Their Ranges

 We manually set the default hyper-parameters and their search ranges

 Number of GCN layers: {1,2}, default 2

 Hidden size in the first layer: [8, 128], default 64

 Hidden size in the second layer: [8, 64], default 32

 Dropout rate: [0.1, 0.9], default 0.5

 Learning rate: [1e-4,1e0], default 0.005

 Number of epochs: [100, 300], default 300

 Weight decay: [1e-4, 1e-1], default 5e-4

 Jumping connection function: {sum, concat, none}, default concat

 Empirically, we find that the most important hyper-parameters are

number of layers, learning rate, and jumping connection function

14

Ensemble

 A simple voting-like method:

 Sort the models by their accuracies (on the validation set)

 Filter models showing significantly poor results

 Make sure that the variance of top models are smaller than a threshold

 Compute the weighted sum of the predicted probabilities as final results

 Important in getting stable predictions

15

Global Time Budget Control

 Goal of the global timer: ensure valid results and estimate running time

 Stop and return results whenever the remaining time < 5 seconds

 Control the time used in feature engineer

 Stop generating features when it had cost 1/3 budget to save time for models

 If the number of edges is too large, does not run EigenGNN

 Estimate the time of training one model to better allocate resources

16

Further Discussions

17

 AutoML algorithms may also suffer from over-fitting

 E.g., only focusing on getting better results on the validation set

 We prepare a dozen off-line datasets for additional validation (all publicly

datasets from PyTorch Geometric)

 Why not doing Neural Architecture Search (NAS):

 Time budget

 Most existing GCN architectures are relatively simple

 E.g., the number of layers is usually no more than 2 due to over-smoothing

 Another strategy we tried but not worked: use network embedding

methods to extract topology features, concatenate with node features,

and adopt a non-linear classifier (e.g., LightGBM)

Results

18

Validation Test

19

Thanks!

Ziwei Zhang, Tsinghua University

zw-zhang16@mails.tsinghua.edu.cn

https://zw-zhang.github.io/

https://github.com/AutoGraphMaNlab/AutoGraph

