
Robust Graph Convolutional Networks Against Adversarial
Attacks

Dingyuan Zhu
∗

Tsinghua University

zhudy11@126.com

Ziwei Zhang

Tsinghua University

zw-zhang16@mails.tsinghua.edu.cn

Peng Cui

Tsinghua University

cuip@tsinghua.edu.cn

Wenwu Zhu

Tsinghua University

wwzhu@tsinghua.edu.cn

ABSTRACT
Graph Convolutional Networks (GCNs) are an emerging type of

neural network model on graphs which have achieved state-of-

the-art performance in the task of node classification. However,

recent studies show that GCNs are vulnerable to adversarial at-

tacks, i.e. small deliberate perturbations in graph structures and

node attributes, which poses great challenges for applying GCNs

to real world applications. How to enhance the robustness of GCNs

remains a critical open problem.

To address this problem, we propose Robust GCN (RGCN), a

novel model that “fortifies” GCNs against adversarial attacks. Specif-

ically, instead of representing nodes as vectors, our method adopts

Gaussian distributions as the hidden representations of nodes in

each convolutional layer. In this way, when the graph is attacked,

ourmodel can automatically absorb the effects of adversarial changes

in the variances of the Gaussian distributions. Moreover, to rem-

edy the propagation of adversarial attacks in GCNs, we propose a

variance-based attentionmechanism, i.e. assigning differentweights

to node neighborhoods according to their variances when perform-

ing convolutions. Extensive experimental results demonstrate that

our proposed method can effectively improve the robustness of

GCNs. On three benchmark graphs, our RGCN consistently shows

a substantial gain in node classification accuracy compared with

state-of-the-art GCNs against various adversarial attack strategies.
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1 INTRODUCTION
Graphs are ubiquitous in the real world, representing complex

relationships between objects such as social networks, e-commerce

networks, biological networks and traffic networks. How to mine

the rich value underlying graph data has long been an important

research direction. Graph Convolutional Networks (GCNs) are a

type of neural network model for graphs that recently attracts

considerable research attention [3, 8, 18]. State-of-the-art GCNs

usually follow a “message-passing” framework [10, 35] where each

node aggregates information from its immediate neighbors in each

convolutional layer. GCNs have been shown to achieve promising

results in many graph analytic tasks such as node classification.

Despite their remarkable performance, recent studies show that

GCNs are vulnerable to adversarial attacks [7, 37], i.e. carefully de-

signed small perturbations in graph structures and node attributes.

By changing only a few links or node attributes which are unno-

ticeable to the users, the performance of GCNs can be drastically

degraded, which poses great challenges for applying GCNs to real

world applications, especially those risk-sensitive scenarios such as

finance networks or medical networks. Therefore, how to design a

robust GCN model in the presence of adversarial attacks is a crucial

open question.

The challenges of this problem are two-fold. Firstly, we need to

enhance the robustness of GCNs while maintaining its effective-

ness, which in turn requires that we need to empower GCNs to

tolerate adversarial information while not changing its backbone

architecture. Secondly, since nodes in the graphs are entangled, the

adversarial attacks can propagate to affect many other nodes be-

sides the directly attacked nodes. How to prevent such propagation

in the “message-passing” framework is another key issue.

In this paper, we propose Robust GCN (RGCN), a novel model to

improve the robustness of GCNs in the presence of adversarial at-

tacks. Specifically, rather than representing nodes by plain vectors

as in all existing GCNs, we propose adopting Gaussian distributions

as the hidden representations of nodes in all graph convolutional

layers. The motivation is that when the graph data is attacked,

the perturbations in graph structures and node attributes are usu-

ally abnormal compared to the existing information. For example,

the attacker tends to connect nodes from different communities

to confuse the classifier [7]. While plain vectors cannot adapt to

such changes, Gaussian distributions can automatically absorb the

effects of such unexpected adversarial changes in the variances

[1, 36]. As a result, using Gaussian distributions can enhance the
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robustness of GCNs. Furthermore, in order to remedy the propaga-

tion of adversarial attacks in GCNs, we propose a variance-based

attention mechanism, i.e. assigning different weights to node neigh-

borhoods according to their variances in the convolution operation.

More concretely, when one node is attacked in previous GCNs, the

adversarial effects will propagate to its neighbors through the con-

volutions, affecting a large proportion of the graph. In our model,

the effect of such propagation will be greatly reduced since the

attacked nodes tend to have large variances and small weights in

affecting other nodes.

To verify the efficacy of our proposed method, we conduct ex-

tensive experiments on several benchmark datasets for the task

of node classification. Experimental results show that our RGCN

consistently outperforms state-of-the-art GCNs under various ad-

versarial attack strategies, demonstrating the robustness of our

proposed method. We also empirically analyze the reasons behind

the effectiveness of our proposed method.

The contributions of this paper are summarized as follows:

• We propose RGCN, a novel model that explicitly enhances

the robustness of GCNs against adversarial attacks. To the

best of our knowledge, we are the first to investigate this

critical and challenging problem.

• We propose using Gaussian distributions in graph convolu-

tional layers to absorb the effects of adversarial attacks and

introduce a variance-based attention mechanism to prevent

the propagation of adversarial attacks in GCNs.

• Extensive experimental results demonstrate the effectiveness

of our proposed method under various adversarial attack

strategies.

The rest of the paper is organized as follows. In Section 2, we review

related works. In Section 3, we summarize the notations and give

some preliminaries. We introduce our proposed method in Section

4 and report experimental results in Section 5. Finally, we conclude

the paper in Section 6.

2 RELATEDWORK
Our work builds upon two categories of recent research: graph

convolutional networks and graph adversarial attacks.

2.1 Graph Convolutional Networks
Graph convolutional networks (GCNs), aiming to generalize con-

volutional neural networks to graph data, have drawn increasing

research interests in the past few years. Next, we briefly review

some representative GCNs, and readers are referred to [2, 35] for

some comprehensive surveys.

Bruna et al. [3] first introduce convolutions for graph data using

graph signal processing [25]. By using the eigen-decomposition

of the graph Laplacian matrix, the convolution is defined in the

graph spectral domain. However, since the full eigenvectors of the

Laplacian matrix are needed, the time complexity of such graph

convolution is very high. To solve the efficiency problem, Cheb-

Net [8] proposes to use a K-order Chebyshev polynomial [13] to

approximate the convolutional filters in the spectral domain. By

using the recurrence relation of Chebyshev polynomials, the ex-

act eigen-decomposition of the Laplacian matrix is avoided, thus

reducing the overall time complexity. Kipf and Welling [18] fur-

ther propose to simplify the graph convolution using only the 1
st

order polynomial, i.e. the immediate neighborhoods. By stacking

multiple convolutional layers, this GCN variant achieves state-of-

the-art performance in the semi-supervised node classification task.

They also design a variational graph autoencoder using GCN as

the encoder [17]. MPNNs [10] and GraphSAGE [12] unify these

approaches using the “message-passing” framework, i.e. defining

the graph convolution as nodes aggregating information from im-

mediate neighborhoods. Further improvements include adding an

attention mechanism to assign different weights in aggregating

node neighborhoods [28, 30, 31, 34], adding residual and jump-

ing connections [32], sampling to improve efficiency [4, 5, 14, 33]

considering edge attributes [15, 23, 26], disentangling node repre-

sentations [20] and automatically selecting hyper-parameters [29].

However, all of these works do not consider the robustness of the

GCN models.

2.2 Graph Adversarial Attacks
Recently, to show the vulnerability of GCNs, some adversarial at-

tackmethods have been proposed. The basic idea is to perturb graph

structures and nodes attributes so that GCNs cannot correctly clas-

sify certain nodes. Meanwhile, the perturbations (i.e. attacks) should

be made unnoticeable to users. Based on different settings, graph

adversarial attacks can be divided into following categories [27]:

• Poisoning or Evasion. Poisoning attacks [37, 38] try to at-

tack the model by changing training data and evasion attacks

[7, 37] try to generate fake samples for a trained model, i.e.

the attacks are categorized by whether they are before (poi-

soning attacks) or after (evasion attacks) the training phase

of GCNs.

• Targeted or Non-targeted. In targeted attacks [7, 37], the

attacker focus on misclassifying some target nodes while in

non-targeted attacks [38], the attacker aims to reduce the

overall model performance.

• Direct or Influence. Targeted attacks can be further divided
into two categories based on attack settings. In direct attacks

[7, 37], the attacker can directly manipulate the edges or

features of the target nodes. In influence attacks [37], the

attacker can only manipulate other nodes except the targets.

Graph adversarial attacks have posed great challenges to the

robustness of GCNs, which severely limits the applicability of GCNs

in real world applications. To the best of our knowledge, there is

no study on improving the robustness of GCNs or preventing them

from adversarial attacks.

3 NOTATIONS AND PRELIMINARIES
In this section, we summarize the notations used in this paper and

introduce some preliminaries of GCNs.

3.1 Notations
In this paper, a graph is defined asG = (V,E), whereV = {v1, ...,vN }
denotes the set of nodes, N = |V| is the number of nodes, and

E ⊆ V × V is the set of edges between nodes. Let A denote the

adjacency matrix and Di,i =
∑
j Ai, j denote the diagonal degree
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Figure 1: The framework of our proposed RGCN. GGCL represents Gaussian-based Graph Convolution Layer introduced in
Section 4.2.

matrix. Let X be a matrix of node feature vectors. We define H(l ) =[
h(l )
1
, h(l )

2
, ..., h(l )N

]
as the hidden representations of nodes in the lth

layer of a deep model where h(l )i is the representation of node vi
and [·, ·] is concatenation. We further define fl as the dimension-

ality of h(l )i and L as the number of layers. For convenience, we

also denote X as H(0). The immediate neighborhoods of node vi ,
including vi itself, are denoted as ne(i).

3.2 Graph Convolutional Networks
Though a number of different GCN methods have been proposed,

here we focus on a representative one proposed by Kipf andWelling

[18]. Here, the (l + 1)th convolutional layer is defined as:

h(l+1)i = ρ
©­­«

∑
j ∈ne(i)

1√
D̃i,i D̃j, j

h(l )j W(l )
ª®®¬ , (1)

or in the equivalent matrix form:

H(l+1) = ρ
(
D̃−

1

2 ÃD̃−
1

2 H(l )W(l )
)
, (2)

where Ã = A + IN , D̃ = D + IN , IN is the identity matrix, ρ(·) is a

non-linear activation function such as ReLU and W(l ) are trainable
parameters. The general philosophy is that nodes should exchange

information with their immediate neighbors in each convolutional

layer, followed by applying learnable filters and some non-linear

transformation. This architecture can be trained end-to-end using

task-specific loss function, for example, the cross entropy loss in

semi-supervised node classification as follows:

Lcls = −
∑
v ∈VL

C∑
c=1

Yvc log Ŷvc , (3)

where VL
is the set of labeled nodes, C is the number of classes, Y

is the label matrix and Ŷ = so f tmax(H(L)) are predictions of GCN
by passing the hidden representation in the final layer H(L) to a

softmax function.

Although this GCN variant is shown extremely effective in the

node classification task, later works show that it can be easily fooled

by adversarial attacks, as discussed in Section 2.2.

4 ROBUST GRAPH CONVOLUTIONAL
NETWORK

In this section, we introduce our proposed method. We first show

the overall framework, and then elaborate on the technical details.

4.1 Framework
To enhance the robustness of GCNs against adversarial attacks, we

propose Robust Graph Convolutional Network (RGCN) and the

framework is shown in Figure 1. Compared with existing methods,

we introduce two novel modifications: we use Gaussian distribu-

tions as the hidden representations of nodes in graph convolutional

layers and assign attention weights to node neighbors according

to their variances. Meanwhile, our model explicitly considers the

mathematical relevance between means and variances by the sam-

pling process and regularizations. In the following subsections, we

will introduce how to realize our model in detail.

4.2 Gaussian-based Graph Convolution Layer
Since we use Gaussian distributions in the hidden layers, the exist-

ing graph convolutions are no longer applicable. Next, we formally

define a Gaussian-based graph convolution layer to perform con-

volution operations between Gaussian distributions. Denote h(l )i =

N(µ(l )i ,diaд(σ
(l )
i )) as the latent representation of nodevi in layer l ,

where µ(l )i ∈ R
fl is the mean vector and diaд(σ (l )i ) ∈ R

fl×fl is the

diagonal variance matrix
1
. We use M(l ) =

[
µ(l )
1
, ..., µ(l )N

]
∈ RN×fl

and Σ(l ) =
[
σ (l )
1
, ...,σ (l )N

]
∈ RN×fl to denote the matrix of means

and variances for all nodes, respectively.

1
In this paper, we focus on diagonal variance matrices, but it can be extended to more

general cases [22]. We also use σ rather than σ 2
to represent variances for the ease

of presentation.
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Consider n independent random variables following Gaussian

distributions. Their weighted sum also follows a Gaussian distribu-

tion, as we show in the following theorem.

Theorem 4.1. If xi ∼ N
(
µi ,diaд(σ i )

)
i = 1, ...,n, and they are

independent, then for any fixed weightswi , we have:

n∑
i=1

wixi ∼ N

( n∑
i=1

wiµi ,diaд

( n∑
i=1

w2

i σ i

))
. (4)

Proof. The proof can be found in probability textbooks such as

[22] and is omitted for brevity. □

Using this theorem and assuming all hidden representations

of nodes are independent
2
, we can aggregate node neighbors as

follows:

h(l )ne(i) =
∑

j ∈ne(i)

1√
D̃i,i D̃j, j

h(l )j

∼ N
©­­«

∑
j ∈ne(i)

1√
D̃i,i D̃j, j

µ(l )j ,diaд
©­«

∑
j ∈ne(i)

1

D̃i,i D̃j, j
σ (l )j

ª®¬
ª®®¬ .
(5)

In other words, the aggregation of node neighbors also follows a

Gaussian distribution.

In addition, to prevent the propagation of adversarial attacks

in GCNs, we propose an attention mechanism to assign different

weights to neighbors based on their variances since larger variances

indicate more uncertainties in the latent representations and larger

probability of having been attacked. Specifically, we use a smooth

exponential function to control the effect of variances on weights

α (l )j = exp(−γσ (l )j ), (6)

where α (l )j are the attention weights of node vj in the layer l and γ

is a hyper-parameter. Then, we modify Eq. (5) as follows:

h(l )ne(i) =
∑

j ∈ne(i)

1√
D̃i,i D̃j, j

(h(l )j ⊙ α
(l )
j )

∼ N
©­­«

∑
j ∈ne(i)

µ(l )j ⊙ α
(l )
j√

D̃i,i D̃j, j

,diaд
©­«

∑
j ∈ne(i)

σ (l )j ⊙ α
(l )
j ⊙ α

(l )
j

D̃i,i D̃j, j

ª®¬
ª®®¬ ,

(7)

where ⊙ is the element-wise product. Note that the attentionweights

are exerted for different dimensions separately.

Following the “message-passing” framework, next we need to

apply learnable filters and non-linear activation functions to h(l )ne(i)
to get h(l+1)i . However, this is mathematically intractable since

h(l )ne(i) is a Gaussian distribution. Alternatively, we directly impose

layer-specific parameters and non-linear activation functions to the

2
We make this assumption to make the computations tractable.

means and variances respectively. Formally, we define Gaussian-

based graph convolution as follows:

µ(l+1)i = ρ
©­­«

∑
j ∈ne(i)

1√
D̃i,i D̃j, j

(
µ(l )j ⊙ α

(l )
j

)
W(l )µ

ª®®¬
σ (l+1)i = ρ

©­«
∑

j ∈ne(i)

1

D̃i,i D̃j, j

(
σ (l )j ⊙ α

(l )
j ⊙ α

(l )
j

)
W(l )σ

ª®¬ ,
(8)

or equivalently in the matrix form:

M(l+1) = ρ
(
D̃−

1

2 ÃD̃−
1

2

(
M(l ) ⊙A(l )

)
W(l )µ

)
Σ(l+1) = ρ

(
D̃−1ÃD̃−1

(
Σ(l ) ⊙A(l ) ⊙A(l )

)
W(l )σ

)
,

(9)

where Wµ ,Wσ are parameters for the means and the variances

respectively and A(l ) = exp(−γΣ(l )).
For the first layer, since input features are vectors rather than

Gaussian distributions, we adopt a fully connected layer as follows:

M(1) = ρ
(
H(0)W(0)µ

)
, Σ(1) = ρ

(
H(0)W(0)σ

)
. (10)

4.3 Loss Functions
Next, we introduce the loss functions of our proposed method. In

this paper, we focus on the task of node classification. Consider-

ing that the hidden representations of our method are Gaussian

distributions, we first adopt a sampling process in the last hidden

layer

zi ∼ N
(
µ(L)i ,diaд

(
σ (L)i

))
, (11)

i.e. zi is sampled from h(L)i . Next, zi is passed to a softmax function

to get the predicted labels:

Ŷ = so f tmax(Z),Z = [z1, .., zN ] . (12)

Then, we can use the same cross entropy loss Lcls defined in

Eq. (3) as the objective function for the task of node classification.

Moreover, we can use the “reparameterization trick” [9] to optimize

this loss function. Mathematically, we first sample ϵ ∼ N(0, I) and

then compute zi = µ(L)i + ϵ ⊙
√
σ (L)i . Given a fixed µ(L)i ,σ

(L)
i and

ϵ , the loss function is deterministic and continuous with respect to

model parameters.

In addition, to ensure that the learned representations are in-

deed Gaussian distributions, we use an explicit regularization to

constrain the latent representations in the first layer as follows:

Lr eд1 =

N∑
i=1

KL
(
N(µ(1)i ,diaд(σ

(1)

i ))| |N(0, I)
)
, (13)

where KL(·| |·) is the KL-divergence between two distributions [19].

Note that we only need to regularize H(1) as deeper layers are nat-
urally Gaussian distributions by using our Gaussian-based Graph

Convolutions.

Following the original GCN model [18], we also impose L2 regu-
larization on parameters of the first layer as follows:

Lr eд2 =



W(0)µ




2
2

+




W(0)σ



2
2

. (14)
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Algorithm 1 Robust Graph Convolutional Network (RGCN)

Input: Graph G = (V,E), Feature Matrix X, Number of Layers

L, Dimensionalities { f1, ..., fL}, Hyper-parameters {γ , β1, β2},
Task Specific Loss Lcls

Output: Latent representations {zi }Ni=1 and RGCN parameters

Θ = {W(i)µ ,W
(i)
σ }

L−1
i=0

1: Initialize all parameters Θ
2: while L does not converge do
3: Calculate M(1), Σ(1) using Eq. (10)

4: for l← 2 to L do
5: Calculate M(l ), Σ(l ) using Eq. (9)

6: end for
7: Sample Z from Gaussian distributions H(L) using Eq. (11).
8: Calculate L using Eq. (15)

9: Update Θ using back-propagation

10: end while

Finally, we jointly minimize the loss function by combining the

above terms:

L = Lcls + β1Lr eд1 + β2Lr eд2, (15)

where β1 and β2 are hyper-parameters that control the impact of

different regularizations.

4.4 Optimization and Complexity Analysis
We show the pseudo-code of RGCN in Algorithm 1. By using

the “reparameterization trick” introduced in the last subsection,

our model can be trained end-to-end using back-propagation, and

thus we can use gradient descent to optimize the model. The time

complexity of our method isO
(
M

∑L
i=0 fl + N

∑L
i=1 fi−1 fi

)
where

N = |V| is the number of nodes, M = |E| is the number of edges

and fl is the dimensionality of the lth hidden layer, i.e. our method

is linear with respect to the number of nodes and number of edges

in the graph respectively, which is in the same order as other GCNs.

Note that since our method also follows the “message-passing”

framework, many sampling strategies for GCNs can be directly

applied, e.g. [4, 5, 14, 33].

5 EXPERIMENTS
In this section, we empirically evaluate the effectiveness of our

proposed method. We first introduce the experimental settings and

then present our experimental results. Some additional experiment

details can be found in the appendix.

5.1 Experimental Settings
5.1.1 Baselines and Adversarial Attack Methods. To evaluate the

robustness of RGCN, we compare it with two state-of-the-art GCN

models:

• GCN [18]: As introduced in Section 3.2 , this is the original

GCN model which defines graph convolution as aggregating

features from neighborhoods.

• GAT [30]: This model enhances GCN by introducing multi-

head self-attention to assign different weights to different

neighbors.

We compare these two GCNs and our proposed RGCN under

three attacking methods:

• Random Attack: We randomly generate fake edges and add

them into the graph. We regard this method as an illustrating

example of non-targeted attacks.

• RL-S2V [7]
3
: This method generates adversarial attacks on

graph-structured data based on reinforcement learning. It

is designed for evasion and targeted attacks and can only

perform direct attacks.

• NETTACK [37]: This method also generates adversarial per-

turbations targeting GCNs. It is designed for targeted attacks

and can perform both direct and influence attacks, which we

denote as NETTACK-Di and NETTACK-In respectively. We

focus on the poisoning attack of NETTACK since it better

matches the transductive node classification setting.

For all attacking methods, we focus on changing graph structures

since it is more related to the graph setting, but our method can be

directly applied to changing node attributes as well.

5.1.2 Datasets. In order to comprehensively evaluate the effective-

ness of our proposed method, we adopt three citation networks

commonly used in previous works [18, 30]: Cora, Citeseer and

Pubmed [24], where nodes represent documents and edges repre-

sent citations. Nodes are also associated with bag-of-words features

and corresponding ground-truth labels. The statistics of the datasets

are summarized in Table 1.

We closely follow the experimental setting in previous works

[18, 30]. Specifically, we use all node features and 20 labels per

class as the training set and another 500 labels for validation and

early-stopping. The performance of different methods is evaluated

on a separate test set of 1000 labels. We adopt the same dataset

splits as in [18] and report the average results of 10 runs.

Table 1: Statistics of datasets. |V | denotes the number of
nodes, |E | denotes the number of edges, |C | denotes the num-
ber of classes and |F | denotes the number of features.

Cora Citeseer Pubmed

|V | 2,708 3,327 19,717

|E | 5,429 4,732 44,338

|C | 7 6 3

|F | 1,433 3,703 500

5.1.3 Parameter Settings. In experiments, we set the number of

layers as two for all methods as suggested by previous works [18,

30]. For GCN and RGCN, we set the number of hidden units as 32.

Note that our method RGCN has both mean and variance vectors.

For a fair comparison, we set their length as 16 so that the total

number of hidden units matches 32. For GAT, we use 8 attention

heads with each head containing 8 features, i.e. a total of 64 hidden

units as suggested by the authors.

For RGCN, the hyper-parameters are set as follows: γ = 1, β1 =
5 · 10−4, β2 = 5 · 10−4 on all datasets. We set the dropout rate

for RGCN as 0.6 and use Xavier initialization [11] for all weight

3
The original paper proposes three different attack methods under different settings.

We choose the most effective method, RL-S2V, in our experiments.
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matrices. The non-linear activation is ELU (·) [6] and ReLU (·) [21]
for means and variances respectively since variances are required

to be non-negative while means can take negative values. For the

optimization, we use Adam [16] with a fixed learning rate of 0.01

and set epoch number as 200 with early stopping on the validation

set. For GCN and GAT, we use the default optimization settings in

the authors implementations.

5.2 Node Classification on Clean Datasets
To build a reference line, we first conduct experiments on the clean

datasets, i.e. datasets that are not attacked. The experimental re-

sults are shown in Table 2. We can see that our proposed method

RGCN slightly outperforms the baseline methods on Pubmed, while

having comparable performance on Cora and Citeseer. The strong

performance of RGCN on clean datasets shows that our proposed

Gaussian-based graph convolution is as effective as traditional

graph convolutions in capturing the graph structure, which lays

the foundation for applying it to the adversarial settings.

Table 2: The results of node classification accuracy (in per-
centages) on clean datasets.

Cora Citeseer Pubmed

GCN 81.5 ± 0.5 70.9 ± 0.5 79.0 ± 0.3

GAT 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3

RGCN 82.8 ± 0.6 71.2 ± 0.5 79.1 ± 0.3

5.3 Against Non-targeted Adversarial Attacks
In this section, we first evaluate the classification accuracy of dif-

ferent methods against non-targeted adversarial attacks, i.e. pertur-

bations that aim to reduce the overall classification accuracy of the

model. To the best of our knowledge, there is no publicly available

non-targeted attack method. Thus we use Random Attack as an

illustrating example of the non-targeted attack method.

Specifically, we focus on adding edges and performing poisoning

attacks, i.e. we randomly choose some node pairs without edges as

noise edges to add into the graph, train different GCN methods on

the modified graph and evaluate the classification accuracy on the

test set. We vary the ratio of noise edges to clean edges from 0.1 to

1 and report the experimental results in Figure 2.

The figure shows that RGCN consistently outperforms both

baselines on all datasets, demonstrating that we can improve the

robustness of GCNs under non-targeted attacks. By using Gaussian

distributions as hidden representations and assigning variance-

based attention weights to neighborhoods, RGCN can absorb the

effects of noise edges and is thus less sensitive to such adversarial

information. On the other hand, although GAT also has attention

mechanisms and achieves the best results on the clean Cora and

Citeseer dataset, the performance of GAT drops rapidly, indicating

that GAT is very sensitive to adversarial attacks and its attention

mechanism cannot adapt to prevent the adversarial attacks.

5.4 Against Targeted Adversarial Attacks
In this section, we continue to evaluate the node classification ac-

curacy of different methods against targeted adversarial attacks.

Specifically, we first use adversarial attack methods to generate

different numbers of perturbations for the targeted nodes, where

one perturbation is defined as adding or deleting one edge in the

graph. Then, we either retrain the GCNmodel for poisoning attacks

(i.e. when use NETTACK) or keep the GCN model unchanged for

evasion attacks (i.e. when use RL-S2V). Finally, we test the per-

formance of different GCNs on the targeted nodes, i.e. whether

we successfully defend the attacks. Considering that adversarial

attacks are designed to be unnoticeable and high-degree nodes usu-

ally have richer values, we set the targeted nodes as all nodes in

the test set with degree larger than 10. For Cora and Citeseer, we

repeat the above process for all targeted nodes. For Pubmed, since

running the adversarial methods for all targeted nodes is very time

consuming, we randomly sample 10% of them.

Next, we show the results when adopting different attack meth-

ods in the following subsections.

5.4.1 RL-S2V. In this subsection, we report the results when adopt-

ing RL-S2V as the attack method. Recall that RL-S2V is an evasion

attack and can only perform direct attacks. We use the default pa-

rameter settings of RL-S2V in the authors implementation. The

experimental results are shown in Figure 3.

The results show that RGCN again consistently achieves better

results compared to all the baselines, demonstrating the robustness

of RGCN under targeted attacks. Note that RGCN does not utilize

any information of the attack method, including which nodes are

the targets. So rather than specifically “defending” certain attacks,

the architecture of RGCN actually improves the overall robustness

of the model and is general to any adversarial attack strategy, which

is desirable in practice since we may not know the attack method

or which nodes are the targets in advance.

5.4.2 NETTACK. In this section, we adopt NETTACK as the at-

tack method and keep all the default parameter settings in the

authors implementation. Since NETTACK can handle both direct

and influence attacks, we report the results of NETTACK-Di and

NETTACK-In in Figure 4 and Figure 5 respectively. In Figure 4, we

focus on the first 5 perturbations because more perturbations will

lead to too low performance for all methods which is unbearable

in practice.

From Figure 4, we can see that the performance of all methods

decays rapidly with respect to the number of perturbations, demon-

strating that NETTACK-Di is a very strong attack method. Despite

that, we can see that RGCN is still consistently more robust than

both baselines on all datasets. On the other hand, for influence at-

tacks shown in Figure 5, all methods have relative higher accuracy,

proving that influence attacks are usually less effective than direct

attacks, Nevertheless, our method still outperforms all baselines.

The experimental results show that no matter how strong the

attacks are, RGCN consistently outperforms the baselines, demon-

strating that our proposed architecture can prevent GCNs from

various targeted attack strategies.

5.5 Parameter Analysis
In this section, we conduct some parameter analysis to further

investigate the reasons behind the robustness of RGCN.
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Figure 2: Results of different methods when adopting Random Attack as the attack method.
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Figure 3: Results of different methods when adopting RL-S2V as the attack method.
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Figure 4: Results of different methods when adopting NETTACK-Di as the attack method.

5.5.1 Analysis of Variances. While designing the model, we claim

that using Gaussian distributions as hidden layers can absorb the

effects of adversarial attacks in the variances to enhance robustness.

To verify that, we analyze how the variances change when the

graph is attacked. Specifically, we follow the experimental setting

in Section 5.4 and plot the variances of the attacked nodes with

respect to the number of perturbations. For brevity, we only report

the variances of the first layer, i.e. σ (1), when using NETTACK-Di

as the attack model, but similar patterns are observed in other cases.

From Figure 6a, we can see that with the number of perturba-

tions increasing, the variances also increase significantly, which is

in accordance with our intuition. By absorbing the effects of adver-

sarial attacks in variances, RGCN is more robust than only using

plain vectors. This also lays the foundation for using variance-based

attention weights.

5.5.2 Analysis of Imposing Variance-based AttentionWeights. More-

over, we also conduct some experiments to analyze whether impos-

ing variance-based attention weights in our model can help remedy

the propagation of adversarial attacks. Specifically, we follow the

experimental setting of non-targeted attacks in Section 5.3 and vary

γ , the hyper-parameter in setting the attention weights. For the

ease of presentation, we only show the results on Cora when setting
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Figure 5: Results of different methods when adopting NETTACK-In as the attack method.
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Figure 6: Results of parameter analysis: (a) the average vari-
ance of targeted nodes w.r.t the number of perturbations; (b)
the parameter sensitivity with respect toγ ; (c) the parameter
sensitivity with respect to β1; (d) the parameter sensitivity
with respect to β2.

the ratio of noise edges between 0 and 0.5, while other datasets

show consistent results.

Figure 6b shows that imposing variance-based attention weights

(γ > 0) outperforms not using attention (γ = 0), demonstrating that

such attention mechanism can indeed improve the robustness of

RGCN. Moreover, we can observe that the margin becomes larger

as the ratio of noise edges increases, indicating the attention mech-

anism is more effective when there are more noise edges. Moreover,

setting γ too large will degrade the performance, probably because

the “message-passing” in real edges is also blocked. We find that

uniformly setting γ = 1 works well in our experiments.

5.5.3 Analysis of Regularizations. In this section, we investigate

the effectiveness of two regularization terms. More specifically, we

evaluate how different values of hyper-parameter β1 and β2 affect

our method. We report the results of node classification on clean

dataset Cora, while other experiments exhibit similar patterns.

Figure 6c and Figure 6d show that choosing an appropriate value

for both β1 and β2 can increase the accuracy of RGCN, which is in

line with our expectations of regularization constraints. However,

setting β1 or β2 too large will also hurt the performance. In our

experiments, setting β1 = β2 = 5 · 10−4 on all datasets lead to

satisfying results.

6 CONCLUSIONS
In this paper, we propose RGCN, a novel graph convolution model

to explicitly enhance the robustness of GCNs against adversarial

attacks. By using Gaussian distributions in hidden layers and in-

troducing variance-based attention weights in aggregating node

neighborhoods, our proposed method can effectively reduce the

impacts of adversarial attacks. Experimental results demonstrate

that our proposed method can consistently improve the robust-

ness of GCNs under various adversarial attack strategies. To the

best of our knowledge, this is the first study on this critical and

challenging problem. Future directions include conducting more

experiments besides citation networks. It is also interesting to ex-

tend this framework to other deep learning models on graphs and

more complicated graph structures such as heterogeneous graphs

or graphs with edge attributes.
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A ADDITIONAL EXPERIMENT DETAILS
A.1 Hardware and Software Configurations
All experiments are conducted on a server with the following con-

figurations:

• Operating System: Ubuntu 18.04.1 LTS

• CPU: Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz

• GPU: GeForce GTX TITAN X

• Software: Python 3.6.7, TensorFlow 1.12.0, SciPy 1.1.0, NumPy

1.15.4.

A.2 Baselines and Adversarial Attack Methods
We use the following publicly available implementation of baseline

methods and adversarial attack methods:

• GCN: https://github.com/tkipf/gcn

• GAT: https://github.com/PetarV-/GAT

• RL-S2V: https://github.com/Hanjun-Dai/graph_adversarial_attack

• NETTACK: https://github.com/danielzuegner/nettack

A.3 Dataset Splits
We use the following publicly available dataset splits for all three

datasets: https://github.com/tkipf/gcn/tree/master/gcn/data
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