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Abstract—Network embedding, aiming to embed a network into a low dimensional vector space while preserving the inherent

structural properties of the network, has attracted considerable attention. However, most existing embedding methods focus on the

static network while neglecting the evolving characteristic of real-world networks. Meanwhile, most of previous methods cannot well

preserve the high-order proximity, which is a critical structural property of networks. These problems motivate us to seek an effective

and efficient way to preserve the high-order proximity in embedding vectors when the networks evolve over time. In this paper, we

propose a novel method of Dynamic High-order Proximity preserved Embedding (DHPE). Specifically, we adopt the generalized

SVD (GSVD) to preserve the high-order proximity. Then, by transforming the GSVD problem to a generalized eigenvalue problem, we

propose a generalized eigen perturbation to incrementally update the results of GSVD to incorporate the changes of dynamic networks.

Further, we propose an accelerated solution to the DHPE model so that it achieves a linear time complexity with respect to the number

of nodes and number of changed edges in the network. Our empirical experiments on one synthetic network and several real-world

networks demonstrate the effectiveness and efficiency of the proposed method.

Index Terms—Dynamic network, high-order proximity, network embedding

Ç

1 INTRODUCTION

NETWORK embedding has attracted increasing attention
in recent years. The basic idea is to embed a network

into a low-dimensional vector space where the proximity
structure of the network is preserved so that the network
analysis and prediction tasks can be conducted in the vector
space. Although the state-of-the-art proposed methods are
demonstrated to be effective in a variety of applications,
such as link prediction [1], [2], classification [3], [4], [5] and
clustering [6], [7], most of these methods are designed for
static networks. In real world, however, networks are
dynamic in nature, where the edges between nodes evolve
over time. For example, users add or delete friends in social
networks, or neurons establish new connections in brain
networks. These newly added or deleted edges raise a new
challenge to network embedding. Suppose that we have
learned the node embeddings based on the edges appearing
before time t. How to efficiently update these node embed-
dings at time tþ Dt so that the changed network structure
caused by the newly added/deleted edges during Dt can be
reflected by the updated node embeddings?

The previous methods have demonstrated that the node
proximity on networks is a critical structure that should be
maintained in the embedding space [8], [9]. The high-order
proximity is proven to be important in capturing the struc-
ture of network [10]. However, it is much more challenging
for the high-order proximity preserved network embedding
methods to efficiently incorporate the newly added/deleted
edges, because any changed edge will affect the high-order
proximities of far more nodes than the two nodes directly
involved by the edge. An extreme case is an infinite order
proximity preserving method in a connected graph, where
changing any edge will change the proximity of any pair of
nodes in the whole graph. How to efficiently address the
changed edges in high-order proximity preserved network
embedding is still an open problem.

Before network embedding, calculating the high-order
proximities in a large network per se is unaffordable in real
applications. Ou et al. [10] recently find a general form for
the commonly used high-order proximities like Katz [11],
and the transformed form makes it possible to derive the
embedding vectors via generalized SVD without explicitly
calculating the high-order proximity matrix. But how to effi-
ciently incorporate the newly added/deleted edges in the
generalized SVD framework has not been investigated, and
thus become the major obstacle of high-order proximity pre-
served embedding for dynamic networks.

In this paper, we propose DHPE to preserve the high-
order proximity on embedding dynamic undirected net-
works. After transforming the GSVD problem into a gener-
alized eigenvalue problem, we are able to incorporate the
dynamically changed edges through matrix perturbation
and thus derive the updated node embeddings while pre-
serving the global high-order proximities. As the method is
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a global updating, it is inevitable to have some complex
terms involving global structural information during matrix
perturbation process, causing the efficiency bottleneck of
the method. To address this, we further propose an acceler-
ated solution scheme for these complex terms, which signif-
icantly reduces the computing complexity.

To verify the advantages of our algorithm, we conduct
extensive experiments on both synthetic dataset and real-
world large-scale datasets. The empirical experiments dem-
onstrate that DHPE can approximate the high-order prox-
imities well during the update process and significantly
outperforms the baseline methods in several tasks, includ-
ing link prediction, node recommendation and multi-label
classification. It is also worthwhile to mention that the pro-
posed method reaches a linear time complexity with respect
to the number of nodes in the network. Considering that the
complexity of globally updating network embedding is at
least linear with respect to the number of nodes in the net-
work, our method is in the same order with the theoretical
lower bound in the scalability.

The main contributions of this paper are as follows:

� We investigate the important and challenging prob-
lem of high-order proximity preserved embedding
on dynamic networks for the first time.

� We propose a GSVD-based method for dynamic net-
work embedding with an incremental updating
based on matrix perturbation.

� We propose an acceleration scheme for the method
and optimize its computing complexity to be in the
same order with the theoretical lower bound.

� We comprehensively evaluate the effectiveness and
efficiency of DHPE on several synthetic and large-
scale real-world networks in various applications.

The rest of the paper is organized as follows. In Section 2,
we review the related work. In Section 3, we formally define
the problem of dynamic network embedding and introduce
the framework of DHPE. We introduce the acceleration of
the algorithm in Section 4 and report the experimental
results in Section 5. We conclude the paper in Section 6.

2 RELATED WORK

The research on network embedding algorithm can be traced
back to the timewhen graph embedding algorithms [12], [13],
[14] have been proposed. The graph embedding algorithms
aim to preserve the feature similarity in the embedded latent
space. These algorithms build an adjacency matrix of graph
which are constructed from the feature similarity, and then
embed the graph to a low-dimensional vector space [15]. For
example, Isomap [13] aims to find the low-dimensional repre-
sentations for a data set by approximately preserving the geo-
desic distances between data pairs. These graph embedding
works focus onmodeling the observed first-order relationship
(i.e., edges in graph) between vertexes, which means they
may overfit the original graph. These algorithms have draw-
backs in real-world network, because the network inference
ability is seriously limited in such an embedding space.

Motivated by the graph embedding techniques, Hoff
et. al. [16] first proposed to learn latent space representation
of nodes for network analysis, and they apply it to link pre-
diction problem [17]. Handcock et. al. [18] proposed to

apply the latent space approach to clustering in graph. And
Zhu et. al. [19] proposed to address the classification prob-
lem in network with graph embedding model. Because of
the popularity of networked data, network embedding has
received more and more attention in recent years. Deepwalk
[9] uses the language modeling techniques and learn the
latent representations of a network by truncated random
walks. LINE [8] embeds the network into a low-dimensional
space where the first-order and second-order proximity
between nodes is preserved. Node2vec [20] learn a mapping
of nodes to a low-dimensional space of features that maxi-
mizes the likelihood of preserving network neighborhoods
of nodes. GraRep [21] tries to model the high-order proxim-
ity between nodes in network, but the time cost of comput-
ing high-order proximity is too high. HOPE [10] proposes a
high-order proximity preserved embedding method. Some
other network embedding methods are proposed to process
heterogeneous networks [4], [22], [23] or networks with con-
tent information [2], [24]. And readers can referred to [25]
for a comprehensive survey for network embedding.

All the aforementioned approaches can only handle
static networks. Some approaches based on first-order prox-
imity can be transformed into dynamic models straightfor-
wardly. For example, the SVD of adjacency matrix can be
used as a simple way to get the embedding of network [26].
Tong et. al. [27] proposed a fast eigen-tracking algorithm,
which can be used to update the solution of the SVD prob-
lem when the matrix is symmetric. Thus we may get a sim-
ple dynamic model base on SVD, but it only preserves the
first-order proximity between nodes. It is still not clear how
to design a high-order proximity preserved embedding
method when the networks are evolving over time.

3 THE DHPE METHOD

In this section, we formally define the problem of dynamic
network embedding with high-order proximity preserved
and introduce our method, DHPE.

3.1 Notation and Definition

We first summarize some notations and definitions used in
this paper. A dynamic network at time step t is defined as
GðtÞ ¼ fVðtÞ;EðtÞg, where VðtÞ ¼ fvðtÞ1 ; v

ðtÞ
2 ; . . . ; v

ðtÞ
N g denotes a

set of nodes and N is the number of the nodes. EðtÞ is the set
of edges between the nodes. In this paper, we mainly con-
sider undirected networks, so edges in EðtÞ are undirected.
The adjacency matrix is denoted as AðtÞ, and DA denotes the
change of adjacency matrix. We define UðtÞ 2 RN�d as the
embedding matrix of the network GðtÞ, where the ith row,
u
ðtÞ
i ,is the embedding vector of v

ðtÞ
i and d is the embedding

dimension. Similar to previous network embedding set-
tings, d is a preset constant and d < < N . Let SðtÞ denotes
the high-order proximity matrix of the network GðtÞ, where
S
ðtÞ
ij is the proximity between v

ðtÞ
i and v

ðtÞ
j .

In this paper, we focus on the problem of dynamic net-
work embedding with high-order proximity preserved. At
each time step, nodes and edges may be added/deleted. By
treating the added/deleted nodes as isolated nodes, all the
changes in the network can be regarded as the changes of
the edges [27]. For the ease of presentation, we consider the
number of nodes as constant.
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The problem of dynamic network embedding can be split
into two parts. First, we build a static model to embed the
static network to a low-dimensional vector space, where
high-order proximities between nodes are preserved. Sec-
ond, we propose a dynamic model to update the embedding
of nodes in the network at following time steps. These two
parts are summarized as follow:

Problem 1. Static network embedding: given adjacency matrix
AðtÞ at time step t; output the embedding matrix UðtÞ using
static model.

Problem 2. Dynamic network embedding: given adjacency

matrix fAðtþ1Þ;Aðtþ2Þ; . . . ;AðtþiÞg at time steps tþ 1; tþ
2; . . . ; tþ i and the embedding matrix UðtÞ at time step t; out-
put the embedding matrix fUðtþ1Þ;Uðtþ2Þ; . . . ;UðtþiÞg at time
step tþ 1; tþ 2; . . . ; tþ i .

3.2 GSVD-Based Static Model

We begin with the model of static network embedding for
preserving high-order proximity. Specifically, as proposed
in [10], we aim to preserve high-order proximity in the
embedding matrix with the following objective function:

minjjS�UU0>jj2F ; (1)

where U;U0 2 RN�d. In matrix decomposition, U and U0 can
be seen as the basis and the coordinate [28]. For undirected
networks, U and U0 are highly correlated, as shown later in
Equation (3), and without loss of generality we choose U as
the embedding matrix.

We choose Katz Index [11] as S because it is one of the
most widely used measures of high-order proximity. It can
be formulated as:

SKatz ¼ Ma
�1Mb

Ma ¼ ðI� bAÞ
Mb ¼ bA;

(2)

where b is a decay parameter and I is the identity matrix. b
determines how fast the weight of a path decays when the
length of path grows. It should be properly set to preserve
the series converging, and we discuss how to set b in Section
5.1.

Then, as in [10], the original objective function can be
solved by the generalized SVD (GSVD) method [28]. By
GSVDmethod, we can derive the singular values and singu-
lar vectors of S without knowing S. Formally, the optimal
embedding vectors of objective function (1) can be given as

U ¼ ½ ffiffiffiffiffi
s1

p
vl1; . . . ;

ffiffiffiffiffi
sd

p
vld�

U0 ¼ ½ ffiffiffiffiffi
s1

p
vr1; . . . ;

ffiffiffiffiffi
sd

p
vrd�;

(3)

where fs1; s2; . . . ; sNg is the singular values of S sorted in
decreasing order. vli and vri are corresponding left and right
singular vectors of si. When S is symmetric, jvlij ¼ jvri j,
where j � j means taking absolute value element-wisely.
According to [10], the error bound of the static method is

jjS�UU0>jj2F ¼
XN
i¼dþ1

s2
i : (4)

3.3 Problem Transformation for Dynamic Model

The problem of the dynamic modeling is that given DA and

UðtÞ, how to incrementally update UðtÞ to Uðtþ1Þ. With Equa-
tion (3), the embedding matrix UðtÞ only depends on the sin-
gular values and singular vectors of SðtÞ, so we focus on
how to update them. At time step t, the results of GSVD sat-
isfy the following equations:

SðtÞ ¼ MðtÞ
a

�1
M

ðtÞ
b ¼ VlðtÞSðtÞVrðtÞ>

S
ðtÞ ¼ diagðs1

ðtÞ; s2
ðtÞ; . . . ; sN

ðtÞÞ;
(5)

where VlðtÞ and VrðtÞ are singular vectors in matrices (e.g.,
v
lðtÞ
i is the ith row of VlðtÞ). As mentioned before, the prob-

lem reduces to developing an efficient way to update the

singular values (SðtÞ) and singular vectors (VlðtÞ;VrðtÞ) to

Sðtþ1Þ, Vlðtþ1Þ and Vrðtþ1Þ respectively. Due to high time com-

plexity of calculating Sðtþ1Þ, it is technically difficult to

directly utilize the Equation (5) for the updating.
Here we propose to transform the GSVD problem into

generalized eigenvalue problem, so that the incremental
updating is feasible. In undirected networks, the adjacency
matrix A and the high-order proximity matrix S are sym-
metric matrices. From [29], GSVD can be transformed into
the generalized eigenvalue problem

Ma
�1MbX ¼ LX (6)

L ¼ diagð�1; �2; . . . ; �NÞ (7)

�i ¼ si � sgnðvli � vri Þ (8)

X ¼ Vl; (9)

where f�ig are the eigenvalues of S in descending order,
and X is a matrix which contains the corresponding eigen-
vectors of �i and sgnðÞ is the Sign function. By multiplying
the matrixMa on both sides of Equation (6), we have:

MbX ¼ MaLX: (10)

The above formula is exactly the formulation of generalized
eigenvalue problem. And the results of the generalized
eigenvalue problem can also be transformed back into the
results of GSVD problem

vli ¼ xisi ¼ j�ijvri ¼ xi � sgnð�iÞ; (11)

where xi is the ith column of the matrix X, which represents
the corresponding eigenvectors of �i.

Based on above equations, we can conveniently derive L
and X from S, Vl and Vr, and vice versa. That means if we
have SðtÞ, VlðtÞ and VrðtÞ, we can get XðtÞ and LðtÞ according
to Equations (8) and (9). Meanwhile, if we have Xðtþ1Þ and
Lðtþ1Þ, we can get S

ðtþ1Þ, Vlðtþ1Þ and Vrðtþ1Þ according to
Equation (11). Then the key problem is how to efficiently
update XðtÞ to Xðtþ1Þ. In next section, we propose generalized
eigen perturbation to fulfill this task.

3.4 Generalized Eigen Perturbation

The goal of generalized eigen perturbation is to update XðtÞ

to Xðtþ1Þ. As the perturbation process for any time step t is
the same, we omit the ðtÞ superscript for brevity. Specifi-
cally, given the change of adjacency matrix DA between two

2136 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 11, NOVEMBER 2018

Authorized licensed use limited to: Tsinghua University. Downloaded on June 07,2021 at 09:26:43 UTC from IEEE Xplore.  Restrictions apply. 



consecutive time steps, the change ofMa andMb can be rep-
resented as

DMa ¼ �bDA; and DMb ¼ bDA: (12)

We use DL and DX to denote the change of the eigenvalues
and eigenvectors. With the Equation (10), we have the fol-
lowing:

ðMb þ DMbÞðXþ DXÞ ¼ ðMa þ DMaÞðLþ DLÞðXþ DXÞ:
(13)

For a specific eigen-pair, we have

ðMb þ DMbÞðxi þ DxiÞ ¼ ð�i þ D�iÞðMa þ DMaÞðxi þ DxiÞ:
(14)

First, we introduce the calculation of D�i. By expanding
Equation (14) and using the factMbxi ¼ �iMaxi, we get

MbDxi þ DMbxi þ DMbDxi

¼ �iMaDxi þ �iDMaxi þ �iDMaDxi

þ D�iMaxi þ D�iMaDxi þ D�iDMaxi þ D�iDMaDxi:

(15)

The higher order terms such as DMbDxi and �iDMaDxi
can be removed as they have limited effects on the accu-
racy of the solution [30]. Removing the higher order
terms in Equation (15) and left multiplying both sides by
x>i , we have

x>i MbDxi þ x>i DMbxi ¼ �ix
>
i MaDxi

þ �ix
>
i DMaxi þ D�ix

>
i Maxi:

(16)

BecauseMa andMb are symmetric, we have

x>i Mb ¼ �ix
>
i Ma: (17)

Using the above equation, x>i MbDxi and �ix
>
i MaDxi can be

cancelled from both sides of Equation (16), we get

x>i DMbxi ¼ �ix
>
i DMaxi þ D�ix

>
i Maxi:

After a few manipulations, we have the formula for calcu-
lating the change of the eigenvalue �i

D�i ¼ x>i DMbxi � �ix
>
i DMaxi

x>i Maxi
: (18)

For ease of presentation, we define some notations that will
be used

Haði; jÞ ¼ xi
>DMaxj

Hbði; jÞ ¼ xi
>DMbxj

Faði; jÞ ¼ xi
>Maxj

Fbði; jÞ ¼ xi
>Mbxj

(19)

Equation (18) can be rewritten as

D�i ¼ Hbði; iÞ � �iHaði; iÞ
Faði; iÞ : (20)

Next, we introduce the calculation of Dxi. Between two
consecutive time steps, the evolution of the network is usu-
ally smooth. With the matrix perturbation theory [31], we

can assume that the change of the eigenvectors Dxi is the lin-
ear expression of the top-d eigenvectors

Dxi ¼
Xd

j¼1;j6¼i

aijxj; (21)

where aij is the coefficient indicating the contribution of xj to
Dxi. Considering Equation (15), replacing all Dxi terms
with Equation (21) andmultiplying the term xp

> ðfor 1� p �
d; p 6¼ iÞ on both size, we can get d� 1 equations

Hbðp; iÞ þ
Xd

j¼1;j6¼i

Hbðp; jÞaij þ
Xd

j¼1;j6¼i

Fbðp; jÞaij

¼ ð�i þ D�iÞHaðp; iÞ þ ð�i þ D�iÞ
Xd

j¼1;j6¼i

Haðp; jÞaij

þ D�iFaðp; iÞ þ ð�i þ D�iÞ
Xd

j¼1;j6¼i

Faðp; jÞaij:

(22)

For a specific Dxi, we have d� 1 equations ðfor 1 � p � d; p 6¼ iÞ
and d� 1 unknowns ðaij; for 1 � j � d; j 6¼ iÞ. Let ai ¼ ½ai1; . . . ;

aiði�1Þ;aiðiþ1Þ; . . . ;aid�>,W 2 Rðd�1Þ�ðd�1Þ and B 2 Rðd�1Þ�1 are

the coefficient matrices. ai can be obtained by the following

formulas:

BðpÞ ¼ Hbðp; iÞ � ð�i þ D�iÞHaðp; iÞ � D�iFaðp; iÞ (23)

Wðp; jÞ ¼ ð�i þ D�iÞ
Xd

j¼1;j6¼i

Haðp; jÞ �
Xd

j¼1;j6¼i

Hbðp; jÞ

þ ð�i þ D�iÞ
Xd

j¼1;j6¼i

Faðp; jÞ �
Xd

j¼1;j6¼i

Fbðp; jÞ
(24)

ai ¼ W�1B: (25)

With the Equations (20), (21), and (25), we can calculate the
change of the eigenvalues and eigenvectors. Then, we calcu-
late Lðtþ1Þ and Xðtþ1Þ by adding D�i and Dxi to the corre-
sponding eigenvalues and eigenvectors respectively. In
order to maintain the consistency of the generalized eigen-
value problem, we normalize the eigenvector Xðtþ1Þ at the
end of the updating process.

4 ACCELERATION AND COMPLEXITY ANALYSIS

In this section we introduce the acceleration of the algo-
rithm and we provide a complexity analysis of the proposed
framework.

4.1 Algorithm Acceleration

For calculating the change of the eigenvalues and eigenvec-
tors, calculating Fa and Fb is necessary. However, it is ineffi-
cient to recalculate Fa and Fb at each time step, as these
terms involving global structural information.

Considering the definition of Fa in Equation (19), the
term xi

>Maxj can be expanded as

xi
>Maxj ¼

X
< l;r>2E

Maðl; rÞxlixrj: (26)

With above equation, the time complexity of computing
Fa

ðtÞ is OðMd2Þ, where M is number of edges in EðtÞ.
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Likewise, the time complexity of computing Fb
ðtÞ is the same

as that of Fa
ðtÞ. Calculating these terms causes the efficiency

bottleneck of our dynamic model.
To address this problem, we propose an incremental cal-

culation scheme for these complex terms. Specifically, by
using the expression of the change of the eigenvectors Dxi ,
we can efficiently update Fa and Fb at new time step. With-
out loss of generality, we use updating FðtÞa as an example

Fa
ðtþ1Þði; jÞ ¼ ðxðtÞi þ DxiÞ

>ðMa
ðtÞ þ DMaÞðxðtÞj þ DxjÞ: (27)

Replacing Dxi and Dxj with Equation (21), we get

Fa
ðtþ1Þði; jÞ ¼

Xd
l¼1

gilx
ðtÞ
l

> � ðMa
ðtÞ þ DMaÞ �

Xd
r¼1

gjrx
ðtÞ
r ; (28)

where

gij ¼ 1 i ¼ j;
aij i 6¼ j:

�
(29)

Replacing all x
ðtÞ
l

>
Ma

ðtÞxðtÞr terms with Fa
ðtÞðl; rÞ and replac-

ing all x
ðtÞ
l

>
DMax

ðtÞ
r terms withHa

ðtÞðl; rÞ, we get

Fa
ðtþ1Þði; jÞ ¼

Xd
l¼1

Xd
r¼1

gilgjrðFaðtÞðl; rÞ þHa
ðtÞðl; rÞÞ: (30)

With above equation, the time complexity of updating
Fa

ðtþ1Þ will reduce to Oðd4Þ. Likewise, Fb
ðtþ1Þ can be updated

in the same fashion

Fb
ðtþ1Þði; jÞ ¼

Xd
l¼1

Xd
r¼1

gilgjrðFbðtÞðl; rÞ þHb
ðtÞðl; rÞÞ: (31)

With this acceleration technique, the time complexity of our
model is unrelated to the number of edges in the network at
last time step, which greatly improves the efficiency of the
algorithm. Algorithm 1 lists the steps of our method.

Algorithm 1. Dynamic High-Order Proximity Preserved
Embedding

Input: UðtÞ, SðtÞ, VlðtÞ, VrðtÞ, FaðtÞ, FbðtÞ ,change of the adjacency
matrix DA between time t and t+1
Output: Uðtþ1Þ, Sðtþ1Þ, Vlðtþ1Þ, Vrðtþ1Þ, Faðtþ1Þ, Fbðtþ1Þ

1: Calculate LðtÞ, XðtÞ by Equations (8) and (9)
2: Calculate DMa , DMb by Equation (12)
3: CalculateHa andHb by Equation (19)
4: for i = 1 to d do
5: Calculate D�i by Equation (20)

6: �
ðtþ1Þ
i ¼ �

ðtÞ
i þ D�i

7: Calculate B andW by Equations (23) and (24)
8: Calculate ai by Equation (25)
9: Calculate Dxi by Equation (21)

10: x
ðtþ1Þ
i ¼ x

ðtÞ
i þ Dxi

11: end for
12: Normalize Xðtþ1Þ and update aij

13: Update Fa
ðtþ1Þ and Fb

ðtþ1Þ by Equations (30) and (31)

14: Calculate Sðtþ1Þ, Vlðtþ1Þ, Vrðtþ1Þ by Equation (11)
15: Calculate Uðtþ1Þ by Equation (3)

4.2 Complexity Analysis

Here, we analyze the complexity of the proposed frame-
work. According to [28], the time complexity of the static
model is OðMd2LÞ, where M is the number of edges in the
network at time step t and L is the iteration number. This is
the partial update algorithm, and we only need to run the
static model once at the beginning of the update algorithm.

At time step t, Fa
ðtÞ and Fb

ðtÞ need to be calculated by defini-
tion which takes OðMd2Þ.

The efficiency of dynamic model is summarized in
Lemma (4.1). The time complexity of dynamic model is lin-
ear with respect to the number of the nodes in the network
and total number of the time steps.

Lemma 4.1 (Complexity of Dynamic Model). Suppose T
is the total number of the time steps, s is the average number of
edges in DA. The time complexity of dynamic model is
OðT ððN þ sÞd2 þ d4ÞÞ, the space complexity of dynamic model
is OðNdþ d2 þ sÞ

Proof. We use step (i) to refer the ith step in the Algorithm
1. For time complexity, step (1) takes OðNdÞ and step (2)
takes OðsÞ. The term xi

>DMaxj can be expanded as

xi
>DMaxj ¼

X
< l;r>2DA

DMaðl; rÞxlixrj: (32)

With above equation, the time complexity of computing
Ha and Hb in step (3) is Oðsd2Þ. Steps (5) (6) takes Oð1Þ
and step (7) takes Oðd3Þ. Then step (8) takes Oðd3Þ and

step (9) takes OðNdÞ. Updating x
ðtþ1Þ
i in step (10) takes

OðNÞ. Therefore, the updating process from step (4) to

(11) takes OðNd2 þ d4Þ. Normalizing Xðtþ1Þ in step (12)

takes OðNdÞ. Finally, step (13) takes Oðd4Þ and step (14)
(15) takes OðNdÞ. Thus the overall time complexity for T

time steps is OðT ððN þ sÞd2 þ d4ÞÞ.
For space complexity, it takes OðNdÞ to store UðtÞ, SðtÞ,

VlðtÞ and VrðtÞ for each time step. In step (1), it takes
OðNdÞ and OðdÞ to store and calculate XðtÞ and LðtÞ

respectively. In step (2), it takes OðsÞ to store and calcu-
late DMa and DMb. In step (3), it takes Oðd2Þ to store and
calculate Ha and Hb. From step (4) to (11), the space cost
of coefficient matrix and ai is Oðd2Þ. In step (13), it takes

Oðd2Þ to store and update Fa
ðtþ1Þ and Fb

ðtþ1Þ. The space

cost can be reused in each time step. Thus the overall

space complexity for T time steps is OðNdþ d2 þ sÞ. tu
In addition, the time complexity of any method to update

the embedding of all nodes in the network is at least
OðNdþ sÞ, because it takes OðsÞ deal with the changed
edges, and the d-dimensional embedding vectors of each
node should be updated. In large-scale networks, we have
N > > d2, thus the time complexity of our algorithm is in
the same order with the theoretical lower bound.

5 EXPERIMENTS

In this section, we empirically evaluate the effectiveness and
efficiency of the DHPE method. In particular, we evaluate
the following tasks: (1) the effectiveness of preserving high-
order proximity for undirected network embedding; (2) the
effectiveness of our proposed model DHPE on dynamic net-
works; (3) the efficiency of the proposed DHPE. We first
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introduce the experiment setting before presenting details
of the experiments.

5.1 Experiment Setting

5.1.1 Baseline Methods

� LINE [8]: This algorithm preserves the first-order
and second-order proximity between nodes. We use
LINE1 to represent LINE preserving first-order prox-
imity and LINE2 to represent LINE preserving sec-
ond-order proximity. For brevity, we exclude the
results of concatenating them (i.e., LINE1 + LINE2)
because it shows similar performance as the former
two.

� DeepWalk [9]: This algorithm learns embedding by
simulating uniform random walks. It assumes a pair
of nodes similar if they are close in the randomwalks.

� node2vec [20]: This algorithm learns embedding by
generating potentially biased random walks. Com-
pared to DeepWalk, it has a more flexible strategy to
explore neighborhoods.

� GraRep [21]: This algorithm generates node repre-
sentations by explicitly computing successive
powers of the random walk transition matrix, and
uses the SVD to reduce their dimensionality.

� TRIP [27]: TRIP is an online algorithm to track the
eigen-functions of a dynamic graph. We use the
SVD method to get the embedding of static net-
work, and apply this algorithm to update embed-
ding incrementally.

In all experiments, we uniformly set the embedding dimen-
sion d to 100 as used in previous embedding methods. The
parameter analysis of b is given in [10], and following their
work, we set b as 0:8=r, where r is spectral radius of adja-
cency matrix. For the baseline methods, we set the parame-
ters by grid search. In the evaluation of link prediction and
multi-label classification, the process is repeated 5 times
and the average results are reported.

5.1.2 Evaluation Metrics

In the experiments, we adopt Root Mean Square Error
(RMSE), Precision@k and Mean Average Precision (MAP)
[10] as the evaluation metrics.

RMSE is used to evaluate the approximation error of the
proximity by our updating algorithm. The formula of RMSE
in our problem is

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kS�UU0>k2F

N2

s
:

Precision@k is used to evaluate the performance of link
prediction, which measures the prediction precision of top
k edges. The formula of Precision@k is

Precision@k ¼ jfði; jÞjði; jÞ 2 Ep \ Eogj
jEpj ;

where Ep is the set of predicted top k edges, Eo is the set of
observed edges and j � j represents the size of set.

Mean Average Precision is used to evaluate the perfor-
mance of node recommendation, which measures the rank

accuracy of recommended node list. The formula of
MAP@k is

AP@kðiÞ ¼
Pk

j¼1 Precision@jðiÞ � diðjÞPk
j¼1 diðjÞ

MAP@k ¼
P

vi2V AP@kðiÞ
jVj ;

where Precision@jðiÞ is Precision@j for node vi, and
diðjÞ ¼ 1 indicates that vi and vj have an edge.

5.2 Effectiveness of the Static Model

In [10], the authors demonstrate that the static model can
handle asymmetric transitivity well in directed networks.
However, the quality of such embedding method is not
verified on undirected networks, where asymmetric transi-
tivity does not exist. To demonstrate the importance of
high-order proximities for undirected network embed-
ding, we evaluate the effectiveness of the static model by
link prediction experiment. In link prediction, we are
given a network with a certain fraction of edges removed,
and then we predict these missing edges. We generate
datasets by randomly separating the original network into
training network and testing network, where training net-
work contains 80 percent edges and testing network con-
tains the rest edges. We train the embedding vectors on
training network, and evaluate the prediction performance
on testing network. This experiment is conducted on the
following datasets:

� BlogCatalog [32]: This is a network of social relation-
ships of the bloggers listed on the BlogCatalog web-
site. The network has 10,312 nodes and 333,983
edges.

� Catster1: This network contains family links between
cats and cats, cats and dogs, as well as dogs and
dogs from the social websites catster.com and dog-
ster.com. The network has 623,766 nodes and
15,699,276 edges.

� Youtube12: This is an undirected network of Youtube
users and their connections. The network has
1,134,890 nodes and 2,987,624 edges.

As the number of possible pairs of nodes NðN � 1Þ is too
large in Catster and Youtube1, we randomly sample about
0.1 percent pairs of nodes for evaluation as done in [10].
Then, we rank them according to the inner product between
embedding vectors, and evaluate the prediction precision in
top k pairs of nodes.

Fig. 1 shows the precision@k of link prediction with dif-
ferent k. The static model, GSVD, outperforms the baselines
significantly. Both GSVD and GraRep preserve the high-
order proximity between nodes, and they achieve better
performance in BlogCatalog dataset. But GraRep is not scal-
able to large-scale networks, we exclude the results of
GraRep on Catster and Youtube1 datasets. The experiment
results demonstrate the high-order proximity between
nodes is helpful for capturing the structure of network.

1. http://konect.uni-koblenz.de/networks/petster-carnivore
2. http://konect.uni-koblenz.de/networks/com-youtube
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5.3 Effectiveness of the Dynamic Model

In this section, we evaluate the effectiveness of the proposed
dynamic model DHPE. We use TRIP and GSVD as baselines
to demonstrate the necessity of dynamic updating embed-
dings while preserving high-order proximities in dynamic
updating. For the ease of presentation, we also use ”Others-
best” to denote the best results of other aforementioned net-
work embedding methods, i.e., DeepWalk, LINE-1, LINE-2,
Node2vec and GraRep. As they can not handle dynamic
networks, we only apply them to the static part of the net-
work, and use the learned embeddings for subsequent tasks
in the dynamic part. Meanwhile, we use GSVD-retain to
retrain the embedding vectors on the entire networks as the
upper bound for our method.

5.3.1 High-Order Proximity Approximation

The goal of our algorithm is to preserve the high-order prox-
imity between nodes. The error of approximation can be used
to evaluate how well we preserve the high-order proximity
between nodes by our updating algorithm. As the time com-
plexity of computing the high-order proximity(Katz) is
OðN3Þ, it can not be calculated on large-scale datasets. Thus,
we evaluate the approximation error on some relatively small
datasets:

� Synthetic Data: We generate the synthetic data by the
forest fire model [33]. The model can generate net-
works with power law properties. The network has
1,000 nodes and 29,887 edges

� Infectious3: This undirected network describes the
face-to-face behavior of people during the exhibition.
Nodes represent exhibition visitors and edges repre-
sent face-to-face contacts between the visitors. The
network has 410 nodes and 17,298 edges.

For synthetic dataset, we add a random timestamp to
each edge. We separate the original network into training
network and growing network by timestamps. Meanwhile,
we ensure the training network is connected. The edges of
the growing network is divided into 10 time slices with
equal time interval. First, we use the static model to train
the embedding vectors on training network denoted as
GSVD-static. Then, we retrain the embedding vectors by
the static model at each time step denoted as GSVD-
retrain. Meanwhile, we update the embedding vectors by
DHPE at each time step. Here, we compare the

embeddings by DHPE with the embeddings by GSVD-
static and the embeddings by GSVD-retrain. We use RMSE
to evaluate high-order proximity approximation error of
different methods.

Fig. 2 shows the result of this experiment, and we can see
that the embedding by DHPE achieves much lower RMSE
than the embedding by GSVD-static. In addition, in Syn-
thetic dataset, DHPE gets comparable results with GSVD-
retrain, while having a much lower time complexity. This
shows that our algorithm can effectively capture the change
of high-order proximity.

5.3.2 Link Prediction

In link prediction, the original network is divided into
three parts according to the timestamp. The first part is
the static network. The second part is the growing net-
work, and dynamic algorithms update the embeddings
through this part of the network. The final part is the test-
ing network, where we evaluate the prediction perfor-
mance. We use static methods such as GSVD and SVD to
initialize the embedding in the static network. The edges
of the growing network are divided into 10 time steps by
timestamp. At each time step, we update the embedding
by dynamic methods such as DHPE and TRIP. Finally,
we use the embedding to predict the edges in testing net-
work. Three real-world networks are used for experimen-
tal evaluation:

� Math4: This is a temporal network of interactions on
the stack exchange web site Math Overflow.

� Internet5: This is the network of connections between
autonomous systems of the Internet.

� Youtube26: This is the social network of YouTube
users and their friendship connections.

The statistics of the three networks are summarized in
Table 1.

As the number of possible pairs of nodes is too large in
Youtube2, we randomly sample about 0.5 percent pairs of
nodes for evaluation as used in [10]. Then, we rank them
according to the inner product between embedding vectors,
and evaluate the prediction precision in top k pairs of
nodes. Fig. 3 shows the precision@k of link prediction on
different real-world dynamic networks. Our algorithm

Fig. 1. Link prediction on static networks.

3. http://konect.uni-koblenz.de/networks/sociopatterns-infectious

4. http://snap.stanford.edu/data/sx-mathoverflow.html
5. http://konect.uni-koblenz.de/networks/topology
6. http://konect.uni-koblenz.de/networks/youtube-u-growth
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consistently improves the link prediction accuracy on the
testing networks. For example, in Internet dataset, DHPE
achieves 40 percent improvement in precision@k, when k is
equal to 104.

5.3.3 Node Recommendation

The setting of training procedure in this experiment is the
same as link prediction. We evaluate the performance of
algorithms from the node view. In orther words, we use
embeddings to select the set of nodes that are most likely to
connect with a particular node. Specifically, we randomly
select 1,000 nodes with incremental edges in testing net-
work. For each node vi, we derive the top 100 nodes with
the highest proximity with vi as the candidates that vi will
possible add edge to. After that, we use MAP@10, MAP@50
and MAP@100 to evaluate the quality of recommendation.
We summarize our results for node recommendation in
Table 2. We can see that DHPE outperforms all the base-
lines. In some datasets like Math and Internet, our method
improves MAP by approximately 30 percent.

5.3.4 Multi-Label Classification

As we did not find a dataset with both label information on
nodes and timestamps on edges, we choose two static data-
sets with labels that have been used in previous work to
conduct this experiment:

� Flickr [34]: This is a network of the contacts between
users of the photo sharing website. The network has
80,513 nodes, 5,899,882 edges and 195 different labels.

� Youtube3 [35]: This is a social network between
users of the popular video sharing website. The net-
work has 1,138,499 nodes, 2,990,443 edges and 47 dif-
ferent labels.

For each network, we add a random timestamp to each
edge and sort the edges by timestamp. The multi-label clas-
sification experiment settings are similar to [9], but the origi-
nal network is divided into two parts according to the
timestamp. We use 50 percent of the edges as the static net-
work and 50 percent of the edges as the growing network.
We use static methods to initialize the embedding in the

Fig. 2. High-order proximity approximation.

TABLE 1
Statistics of Datasets Used in Section 5.3.2 Where jV j Denotes

the Number of Nodes , jEstaticj; jEgrowj, and jEtestj Denote
the Number of Edges in the Static Network, Growing

Network and Testing Network, Respectively

Math Internet Youtube2

jV j 13,586 32,077 1,021,043
jEstaticj 116,408 111,644 1,913,723
jEgrowj 41,522 58,882 590,561
jEtestj 96,886 137,388 835,202

Fig. 3. Link prediction on dynamic networks. Others-best represent GraRep in math and internet datasets and LINE1 in Youtube2 dataset, where
GraRep and LINE1 achieve the best performance in all baselines for static networks, respectively.

TABLE 2
MAP of Node Recommendation on Datasets

Method Math Internet Youtube2

MAP@10 MAP@50 MAP@100 MAP@10 MAP@50 MAP@100 MAP@10 MAP@50 MAP@100

DHPE 0.1748 0.1344 0.1126 0.1043 0.0514 0.0355 0.0840 0.0471 0.0333
GSVD 0.1402 0.1041 0.0877 0.0713 0.0360 0.0265 0.0729 0.0419 0.0290
TRIP 0.1424 0.0988 0.0815 0.0757 0.0317 0.0215 0.0698 0.0386 0.0287
SVD 0.1295 0.0934 0.0774 0.0670 0.0266 0.0182 0.0652 0.0353 0.0262
Others-best 0.1320 0.0997 0.0831 0.0695 0.0324 0.0221 0.0686 0.0378 0.0283
GSVD-retrain 0:1859 0.1432 0.1195 0.1170 0.0623 0.0414 0.0907 0.0518 0.0356

For each node, the recommended node list is ranked according to the predicted proximity between nodes. For embedding algorithms, we calculate the predicted
proximity by performing inner product between embedding vectors. Others-best represent GraRep in Math and Internet datasets and LINE1 in Youtube2 dataset,
where GraRep and LINE1 achieve the best performance in all baselines for static networks, respectively.

ZHU ETAL.: HIGH-ORDER PROXIMITY PRESERVED EMBEDDING FOR DYNAMIC NETWORKS 2141

Authorized licensed use limited to: Tsinghua University. Downloaded on June 07,2021 at 09:26:43 UTC from IEEE Xplore.  Restrictions apply. 



static network and update the embedding by dynamic
methods in the growing network.

Then, we randomly sample a portion of the labeled
nodes to predict the labels of the rest nodes. For all methods,
we use a one-vs-rest logistic regression implemented by
LibLinear [36] for classification. We use the Micro-F1 and
Macro-F1 scores to evaluate the results. We compare perfor-
mance while varying the percentages of hidden labels from
1 to 10 percent. From the results shown in Fig. 4, we can see
DHPE can achieve a better classification performance than
baselines even if the labelled data is limited. Such an advan-
tage is meaningful for real-world applications, because the
labelled data in real-world network is usually scarce. From
these experiments, we can conclude that high-order proxim-
ity and incorporating dynamic changes are both of para-
mount importance in network embedding, and our method
shows superior performance than baselines.

5.3.5 Visualization

Visualization is another important application for network
embedding. We randomly choose a subset of Youtube3, and
then we generate visualizations of the network on a two-
dimensional space. For the network, we add a random time-
stamp to each edge and sort the edges by timestamp. We use
10 percent of the edges as the static network and 10 percent of
the edges as the growing network. We use static methods to
initialize the embedding in the static network. The edges of
the growing network are divided into 2 time steps by time-
stamp. At each timestep, we update the embedding by DHPE
method. Then, we use the network embedding learned by
DHPE as the input to the visualization tool t-SNE [37]. For
nodes with different labels, we use different colors on the cor-
responded points. For simplicity, we randomly select two
labels as a showcase. From the visualization figure shown in
Fig. 5, we can see DHPE capture the change of network struc-
ture caused by the newly added edges effectively.

5.3.6 Parameter Sensitivity

In this section, we investigate the parameter sensitivity.
More specifically, we evaluate how different numbers of the
embedding dimensions can affect the results of link predic-
tion and multi-label classification. Following the previous
experiment settings, we only change the numbers of the
embedding dimensions to show how the dimensionality
affects the performance of DHPE.

We report Precision@k on the dataset of Internet and
Micro-F1 scores on the dataset of Flickr. The experiment
results are shown in Fig. 6.We can see that initially the perfor-
mance raises when the number of dimension increases. How-
ever, when the number of dimensions continuously increases,
the performance tends to be stable. This is becausemost of the
useful information is already encoded into the embeddings.
Additional dimensions consume more computing resources,
but have less effect on performance. Overall, it is important to
determine the appropriate number of dimensions for the
latent space.When the number of dimensions is not too small,
DHPE is not very sensitive to this parameter.

5.4 Efficiency of the Dynamic Model

In this section, we evaluate the efficiency of the algorithm
from two aspects. First, we compare DHPE to retraining the

Fig. 4. Multi-label classification results. Others-best represent node2vec in Flickr and Youtube3 datasets, where node2vec achieve the best perfor-
mance in all baselines for static networks.

Fig. 5. Visualization of network embedding.

Fig. 6. Results of parameter sensitivity.
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static method to calculate the speedup ratio. Second, we
count the running time of DHPE on a real world large-scale
network.

5.4.1 Speedup Ratio

We compare the efficiency of DHPE and GSVD on different
datasets. At each time step, we count the time cost on the
updating by DHPE and the retraining by GSVD respectively.
Fig. 7 shows the average speedup ratio with respect to differ-
ent embedding dimensions. DHPE_slow represents theDPHE
without the acceleration of Section 4, which calculates the Fa

and Fb by definition. We can see that the acceleration effect is
significant. The time complexity of our algorithm is unrelated
to the existing edges of the network. When the network is
larger, the advantage of our algorithm is more obvious. In
internet dataset, we see that DHPE can achieve more than
100X speedup ratio when d is smaller than 100. As the embed-
ding dimension d increases, the speedup ratio decreases. This
is consistent with our analysis of the time complexity.

5.4.2 Scalability

We count the actual running time of DHPE in Youtube2, the
largest network in our experiments. We run the experiment
in a machine with 4 processors Intel Xeon 2.6 GHz with
256 GB of RAM. Fig. 8 shows the running time of DHPE
with respect to the number of new edges and the number of
nodes respectively. In Fig. 8a, we set the number of nodes to
1,000,000 and vary the number of new edges from 100,000
to 1,000,000. In Fig. 8b, we set the number of new edges
to 200,000 and vary the number of nodes from 200,000 to
2,000,000. When the embedding dimension d is 200, our
algorithm only spends less than 100 seconds to update the
embedding in the network of one million nodes.

6 CONCLUSION

In this paper, we study the problem of dynamic undirected
network embedding while preserving high-order proxim-
ity. We propose a scalable network embedding algorithm,
called Dynamic High-Order Proximity preserved Embed-
ding (DHPE). The algorithm preserves the high-order prox-
imity between nodes and updates the embedding of
network effectively and efficiently. With the acceleration of
the algorithm, our algorithm achieves linear time complex-
ity with respect to the number of nodes and number of
changed edges in the network. The empirical study demon-
strates the superiority of high-order proximities and our
proposed algorithm, DHPE. Our future direction is to
develop a nonlinear model to better capture the structure of
dynamic directed networks.
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