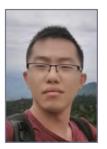


Arbitrary-Order Proximity Preserved Network Embedding

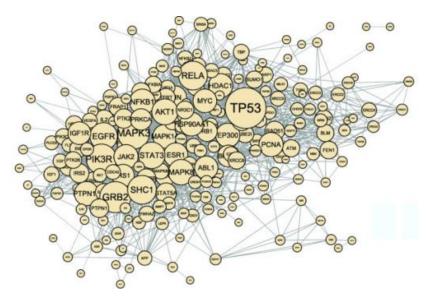
Ziwei Zhang Tsinghua U

Peng Cui Tsinghua U Xiao Wang

Jian Pei Xuanrong Yao Wenwu Zhu Tsinghua U JD&Simon Fraser U Tsinghua U Tsinghua U



Network Data is Ubiquitous



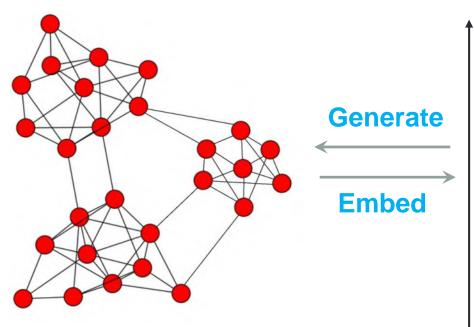
2

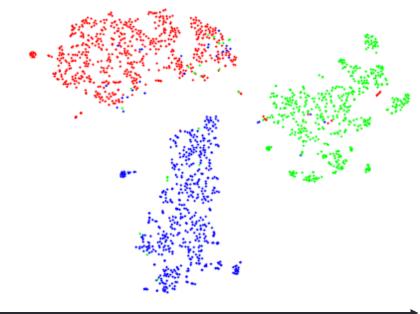
Social Network

Biology Network

Traffic Network

Network Embedding: Vector Representation of Nodes



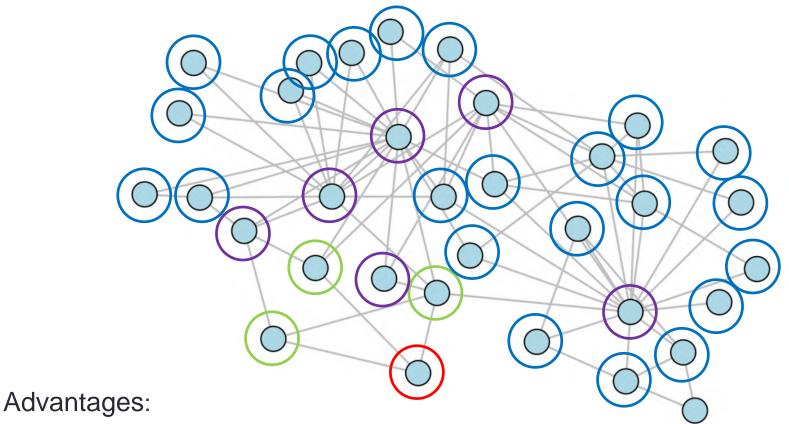


- Apply feature-based machine learning algorithms
- Fast compute nodes similarity
- Support parallel computing

 Applications: link prediction, node classification, community detection, measuring centrality, anomaly detection ...

High-Order Proximity

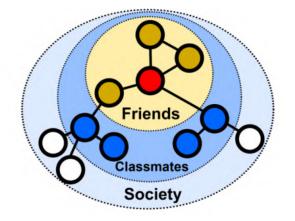
□ High-order proximity: key in capturing the underlying structure of networks



- Solve the sparsity problem of network connections
- Measure indirect relationship between nodes

Different High-Order Proximities

- Different networks/tasks require different high-order proximities
 - E.g., multi-scale classification (Bryan Perozzi, et al, ASONAM, 2017)



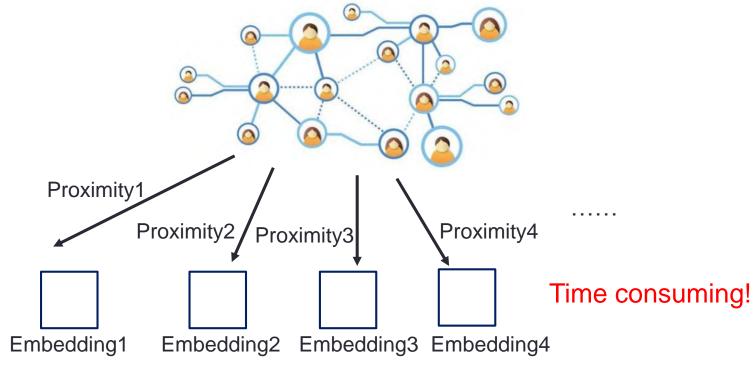
- **D** E.g., networks with different scales and sparsity
- □ Proximities of different orders can also be arbitrarily weighted
 - **D** E.g., equal weights, exponentially decayed weights (Katz)

Existing Methods

- Methods based on random-walks
 - DeepWalk, B. Perozzi, et al. KDD 2014.
 - LINE, J. Tang, et al. WWW 2015.
 - □ Node2vec, A. Grover, et al. *KDD 2016*.
 - Random walks on networks + skip-gram model from NLP
- Methods based on matrix factorization
 - GraRep, S. Cao, et al. *CIKM*, 2015.
 - **D** HOPE, M. Ou, et al. *KDD 2016.*
 - □ M-NMF, X. Wang, et al. AAAI 2017.
 - □ Objective function based on matrix factorization + optimization
- Methods based on deep learning
 - □ SDNE, D. Wang, et al. KDD 2016.
 - **D**VNE, D. Zhu, et al. *KDD 2018.*
 - Deep auto-encoder to preserve the non-linearity

Existing Methods (cont.)

Existing methods can only preserve one fixed high-order proximity
Different high-order proximities have to be calculated separately



 \rightarrow How to preserve arbitrary-order proximity simultaneously?

Key question: what is the underlying relationship between different proximities?

Problem Formulation

High-order proximity: a polynomial function of the adjacency matrix

$$S = \mathcal{F}(A) = w_1 A^1 + w_2 A^2 + \dots + w_q A^q$$

 \square q: order; $w_1 \dots w_q$: weights, assuming to be non-negative

A: could be replaced by other variations (such as the Laplacian matrix)

Objective function: matrix factorization

$$\min_{U^*,V^*} \left\| S - U^* V^{*T} \right\|_F^2$$

 \square $U^*, V^* \in \mathbb{R}^{N \times d}$: left/right embedding vectors

d: dimensionality of the space

Optimal solution: Singular Value Decomposition (SVD)

 $\Box [U, \Sigma, V]: \text{ top-d SVD results}$

$$U^* = U\sqrt{\Sigma}, V^* = V\sqrt{\Sigma}$$

However, direct calculation is time-consuming

Problem Transformation

Problem Transformation

□ $[U, \Sigma, V]$: top-d SVD . $[\Lambda, X]$: top-d eigen-decomposition

D Theorem:

$$\begin{cases} U(:, i) = X(:, i) \\ \Sigma(i, i) = abs(\Lambda(i, i)) , and \\ V(:, i) = X(:, i)sign(\Lambda(i, i)) \end{cases}$$
$$X(:, i) = U(:, i) \\ \Lambda(i, i) = \Sigma(i, i)sign(U(:, i) \cdot V(:, i)) \end{cases}$$

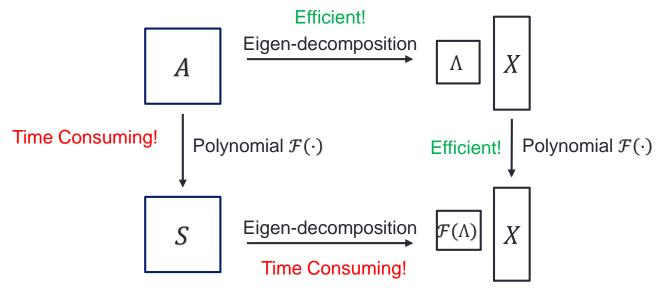
 $\square \text{ How to solve } [\Lambda, X] \text{ for } S = f(A) = w_1 A^1 + w_2 A^2 + \dots + w_q A^q$

Eigen-decomposition Reweighting

Eigen-decomposition reweighting

THEOREM 4.2 (EIGEN-DECOMPOSITION REWEIGHTING). If λ , **x** is an eigen-pair of **A**, then $\mathcal{F}(\lambda)$ **x** is an eigen-pair of **S** = $\mathcal{F}(\mathbf{A})$.

 $\square Ax = \lambda x \to A^2 x = \lambda^2 x \to \mathcal{F}(A) x = \mathcal{F}(\lambda) x$

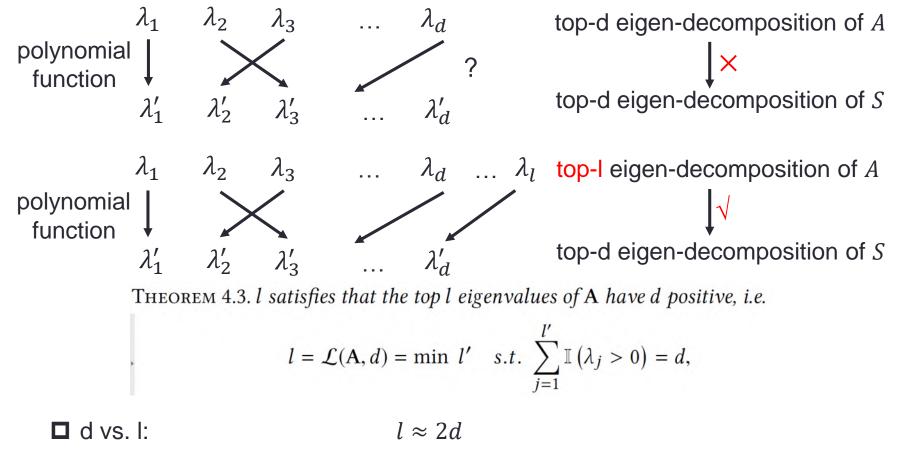


Insights: high-order proximity is simply re-weighting dimensions!

Eigenvectors as coordinates, eigenvalues as weights

Eigen-decomposition Reweighting (cont.)

Re-ordering of dimensions

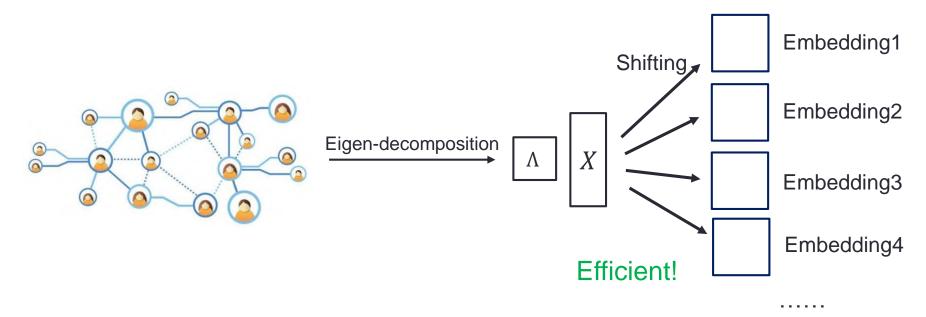


Proven for random (Erdos-Renyi), random power-law networks

Verified on experiments

Preserving Arbitrary-Order Proximity

Shifting across different orders/weights:



- □ Preserve arbitrary-order proximity simultaneously
- □ Low marginal cost for preserving multiple proximities
- □ Accurate (global optimal) and efficient (linear time complexity)

Algorithm Framework

Algorithm 1 AROPE: ARbitrary-Order Proximity preserved Embedding

Require: Adjacency Matrix A , Dimensionality <i>d</i> , Different High-
Order Proximity Functions $\mathcal{F}_1(\cdot),, \mathcal{F}_r(\cdot)$
Ensure: Embedding vectors $\mathbf{U}_i^*, \mathbf{V}_i^*$ for $\mathcal{F}_i(\cdot), 1 \leq i \leq r$
1: Calculate the top- l eigen-decomposition $[\Lambda, X]$ of A
2: for i in 1:r do
3: Calculate the reweighted eigenvalues $\Lambda' = \mathcal{F}_i(\Lambda)$
4: Sort Λ' in descending order of the absolute value and select
the top- <i>d</i>
5: Calculate the top- d SVD results using Eq. (4)
6: Return $\mathbf{U}_{i}^{*}, \mathbf{V}_{i}^{*}$ using Eq. (3)
7: end for

Time complexity: $O(T(Nl^2 + Ml) + r(l + Nd))$

- *N*: number of nodes; *M*: number of edges; *T*: iteration; *d*: embedding dimension $(l \approx 2d)$; *r*: number of shifting
- Linear w.r.t. the network size
- Marginal cost for preserving multiple proximities

Special Cases of the Proposed Method

Common Neighbors: the second order

$$S = A^2$$

Propagation: weighted combination of the second and the third order

$$S = w_2 A^2 + w_3 A^3$$

□ Katz Proximity: infinite order with exponentially decayed weights

$$S = \sum_{i=1}^{+\infty} \beta^i A^i$$

1

Eigenvector Centrality: the first dimension

 $U^*(:, 1) \propto eigenvector_centrality$

Regardless of what high-order proximity is

Experimental Setting: Datasets

Datasets:

- BlogCatalog, Flickr, Youtube: online social networks where nodes represent users and edges represent relationships between users.
- Wiki: wikipedia hyperlinks, where each node represents a page and each edge represents a hyperlink between two pages. The edges are treated as undirected.

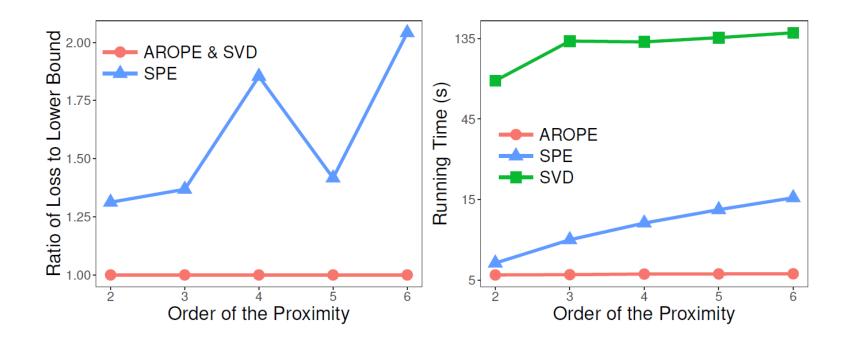
Dataset	# Nodes	# Edges	Average Degree
BlogCatalog	10,312	667,966	64.8
Flickr	80,513	11,799,764	146.6
Youtube	1,138,499	5,980,886	5.3
Wiki	1,791,486	50,888,414	28.4

Table 1: The Statistics of Datasets

Experimental Setting: Baselines

D Baselines:

- DeepWalk (KDD 2014): DFS random walk + skip-gram
- □ LINE (WWW 2015): BFS random walk + skip-gram
- □ Node2vec (KDD 2016): biased random walk + skip-gram
- □ SDNE (KDD 2016): deep auto-encoder
- NEU (IJCAI 2017): matrix factorization approximation
- Our method:
 - □ AROPE: search q from {1,2,3,4} and grid search weights
 - **D** AROPE-F: search q from {1,2,3,4} while fixing weights $w_i = 0.1^i$
 - Limit the search space for hyper-parameters
 - □ Code: https://github.com/ZW-ZHANG/AROPE



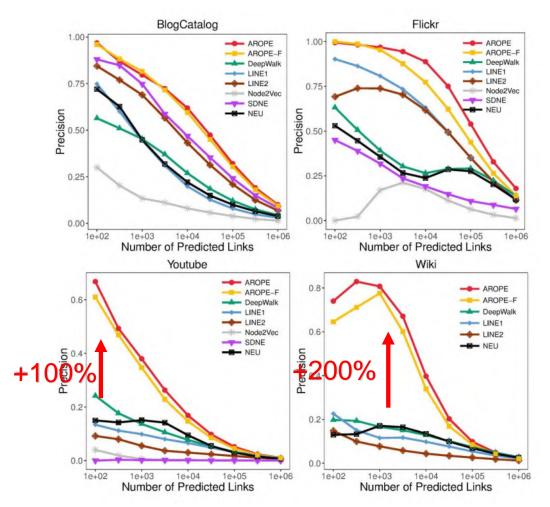
Achieves the global optimal solution while being extremely efficient

Network Reconstruction



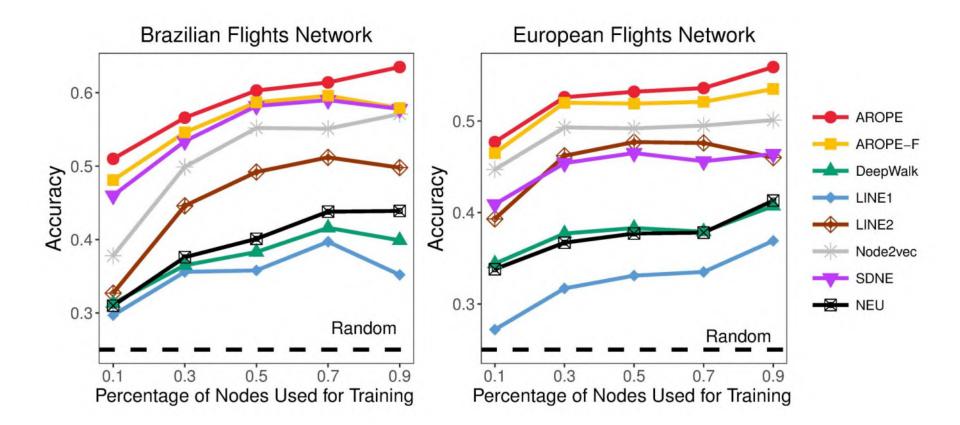
Better preserve network structure

Link Prediction



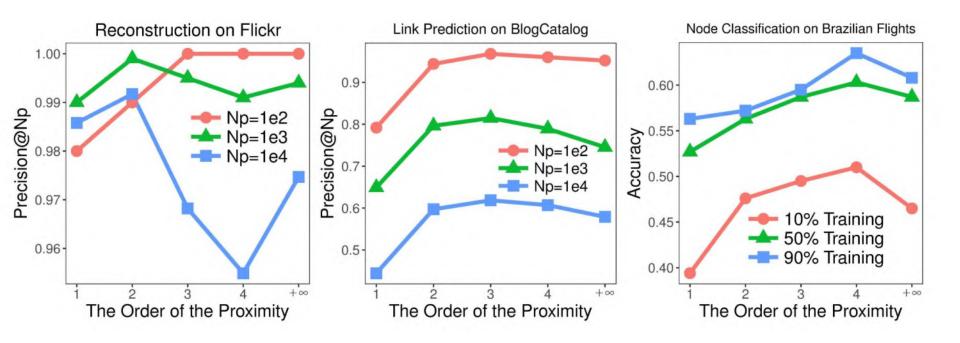
Good inference ability: preserve arbitrary-order proximity

■ Node structural role classification (struc2vec, *KDD 2017*)



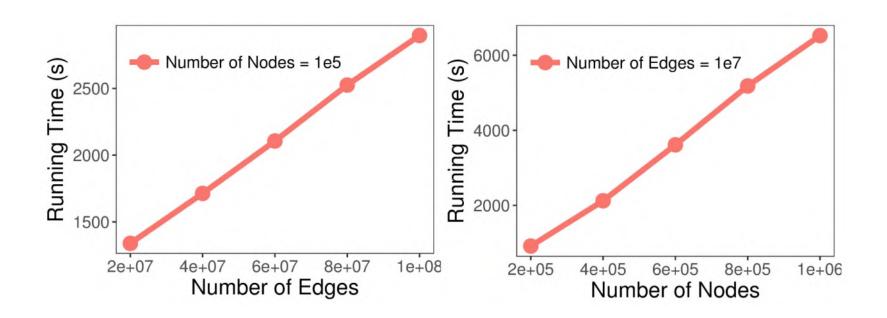
Capture the structural role of nodes

Parameter analysis



The optimal order varies greatly on different tasks and datasets

□ Scalability analysis



Linear scalability w.r.t. number of nodes and number of edges (< 2 hours on network with 1 million nodes and 10 millions edges in a single PC)

Conclusion

- Study the problem of preserving arbitrary-order proximity in network embedding
 - Different networks/tasks require different proximities
- Eigen-decomposition Reweighting
 - The intrinsic relationship between different proximities is reweighting and reordering dimensions
 - Preserving arbitrary-order proximity
 - Incorporate many commonly used proximity measures as special cases
- Experimental results:
 - □ +100% improvements in network reconstruction and link prediction
 - Capture the structural roles of node
 - □ Linear scalability

Thanks!

Ziwei Zhang, Tsinghua University zw-zhang16@mails.tsinghua.edu.cn

https://zw-zhang.github.io/

http://nrl.thumedialab.com/

