
Arbitrary-Order Proximity Preserved

Network Embedding

Ziwei Zhang Peng Cui Xiao Wang Jian Pei Xuanrong Yao Wenwu Zhu

Tsinghua U Tsinghua U Tsinghua U JD&Simon Fraser U Tsinghua U Tsinghua U

2

Network Data is Ubiquitous

Social Network Biology Network

Traffic Network

3

Network Embedding:
Vector Representation of Nodes

Generate

Embed

 Apply feature-based machine

learning algorithms

 Fast compute nodes similarity

 Support parallel computing

 Applications: link prediction,

node classification, community

detection, measuring centrality,

anomaly detection ...

4

 High-order proximity: key in capturing the underlying structure of networks

 Advantages:

 Solve the sparsity problem of network connections

 Measure indirect relationship between nodes

High-Order Proximity

5

 Different networks/tasks require different high-order proximities

 E.g., multi-scale classification (Bryan Perozzi, et al, ASONAM, 2017)

 E.g., networks with different scales and sparsity

 Proximities of different orders can also be arbitrarily weighted

 E.g., equal weights, exponentially decayed weights (Katz)

Different High-Order Proximities

6

 Methods based on random-walks

 DeepWalk, B. Perozzi, et al. KDD 2014.

 LINE, J. Tang, et al. WWW 2015.

 Node2vec, A. Grover, et al. KDD 2016.

 Random walks on networks + skip-gram model from NLP

 Methods based on matrix factorization

 GraRep, S. Cao, et al. CIKM, 2015.

 HOPE, M. Ou, et al. KDD 2016.

 M-NMF, X. Wang, et al. AAAI 2017.

 Objective function based on matrix factorization + optimization

 Methods based on deep learning

 SDNE, D. Wang, et al. KDD 2016.

 DVNE, D. Zhu, et al. KDD 2018.

 Deep auto-encoder to preserve the non-linearity

Existing Methods

7

 Existing methods can only preserve one fixed high-order proximity

 Different high-order proximities have to be calculated separately

→ How to preserve arbitrary-order proximity simultaneously?

Key question: what is the underlying relationship between different proximities?

Existing Methods (cont.)

……
Proximity1

Proximity2 Proximity3 Proximity4

Embedding1 Embedding2 Embedding3 Embedding4

Time consuming!

8

Problem Formulation

 High-order proximity: a polynomial function of the adjacency matrix

𝑆 = ℱ 𝐴 = 𝑤1𝐴
1 + 𝑤2𝐴

2 +⋯+𝑤𝑞𝐴
𝑞

 𝑞: order; 𝑤1…𝑤𝑞: weights, assuming to be non-negative

 𝐴: could be replaced by other variations (such as the Laplacian matrix)

 Objective function: matrix factorization

min
𝑈∗,𝑉∗

𝑆 − 𝑈∗𝑉∗𝑇
𝐹

2

 𝑈∗, 𝑉∗ ∈ ℝ𝑁×𝑑: left/right embedding vectors

 d: dimensionality of the space

 Optimal solution: Singular Value Decomposition (SVD)

 𝑈, Σ, 𝑉 : top-d SVD results

𝑈∗ = 𝑈 Σ, 𝑉∗ = 𝑉 Σ

 However, direct calculation is time-consuming

9

Problem Transformation

 Problem Transformation

 𝑈, Σ, 𝑉 : top-d SVD . Λ, X : top-d eigen-decomposition

 Theorem:

 How to solve Λ, X for 𝑆 = 𝑓 𝐴 = 𝑤1𝐴
1 + 𝑤2𝐴

2 +⋯+𝑤𝑞𝐴
𝑞

10

Eigen-decomposition Reweighting

 Eigen-decomposition reweighting

 𝐴𝑥 = 𝜆𝑥 → 𝐴2𝑥 = 𝜆2𝑥 → ℱ 𝐴 𝑥 = ℱ 𝜆 𝑥

 Insights: high-order proximity is simply re-weighting dimensions!

 Eigenvectors as coordinates, eigenvalues as weights

𝐴 𝑋Λ
Eigen-decomposition

𝑆

Polynomial ℱ · Polynomial ℱ ·

𝑋ℱ ΛEigen-decomposition

Time Consuming!

Time Consuming!

Efficient!

Efficient!

 Re-ordering of dimensions

 d vs. l: 𝑙 ≈ 2𝑑

 Proven for random (Erdos-Renyi), random power-law networks

 Verified on experiments

11

Eigen-decomposition Reweighting (cont.)

𝜆1 𝜆2 𝜆3 𝜆𝑑…

𝜆1
′ 𝜆2

′ 𝜆3
′ 𝜆𝑑

′
…

polynomial

function

top-d eigen-decomposition of 𝐴

top-d eigen-decomposition of 𝑆

top-l eigen-decomposition of 𝐴

top-d eigen-decomposition of 𝑆

×

√

𝜆𝑙𝜆1 𝜆2 𝜆3 𝜆𝑑…

𝜆1
′ 𝜆2

′ 𝜆3
′ 𝜆𝑑

′
…

polynomial

function

…

?

12

Preserving Arbitrary-Order Proximity

 Shifting across different orders/weights:

 Preserve arbitrary-order proximity simultaneously

 Low marginal cost for preserving multiple proximities

 Accurate (global optimal) and efficient (linear time complexity)

Eigen-decomposition
𝑋Λ

……

Embedding1

Embedding2

Embedding3

Efficient!

Shifting

Embedding4

13

Algorithm Framework

 Time complexity: 𝑂 𝑇 𝑁𝑙2 +𝑀𝑙 + 𝑟 𝑙 + 𝑁𝑑

 𝑁: number of nodes; 𝑀: number of edges; 𝑇: iteration; 𝑑: embedding

dimension (𝑙 ≈ 2𝑑); 𝑟: number of shifting

 Linear w.r.t. the network size

 Marginal cost for preserving multiple proximities

14

Special Cases of the Proposed Method

 Common Neighbors: the second order

𝑆 = 𝐴2

 Propagation: weighted combination of the second and the third order

𝑆 = 𝑤2𝐴
2 +𝑤3𝐴

3

 Katz Proximity: infinite order with exponentially decayed weights

𝑆 =

𝑖=1

+∞

𝛽𝑖𝐴𝑖

 Eigenvector Centrality: the first dimension

𝑈∗ : , 1 ∝ 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟_𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦

 Regardless of what high-order proximity is

15

Experimental Setting: Datasets

 Datasets:

 BlogCatalog, Flickr, Youtube: online social networks where

nodes represent users and edges represent relationships

between users.

 Wiki: wikipedia hyperlinks, where each node represents a

page and each edge represents a hyperlink between two

pages. The edges are treated as undirected.

16

Experimental Setting: Baselines

 Baselines:

 DeepWalk (KDD 2014): DFS random walk + skip-gram

 LINE (WWW 2015): BFS random walk + skip-gram

 Node2vec (KDD 2016): biased random walk + skip-gram

 SDNE (KDD 2016): deep auto-encoder

 NEU (IJCAI 2017): matrix factorization approximation

 Our method:

 AROPE: search q from {1,2,3,4} and grid search weights

 AROPE-F: search q from {1,2,3,4} while fixing weights 𝑤𝑖 = 0.1𝑖

 Limit the search space for hyper-parameters

 Code: https://github.com/ZW-ZHANG/AROPE

17

Experimental Results

 Preserving the High-Order Proximity

Achieves the global optimal solution while being extremely efficient

18

Experimental Results

 Network Reconstruction

+100%
+100%

+100%

Better preserve network structure

19

Experimental Results

 Link Prediction

+200%+100%

Good inference ability: preserve arbitrary-order proximity

20

Experimental Results

 Node structural role classification (struc2vec, KDD 2017)

Capture the structural role of nodes

21

Experimental Results

 Parameter analysis

The optimal order varies greatly on different tasks and datasets

22

Experimental Results

 Scalability analysis

Linear scalability w.r.t. number of nodes and number of edges

(< 2 hours on network with 1 million nodes and 10 millions edges in a single PC)

23

Conclusion

 Study the problem of preserving arbitrary-order proximity in network

embedding

 Different networks/tasks require different proximities

 Eigen-decomposition Reweighting

 The intrinsic relationship between different proximities is reweighting and

reordering dimensions

 Preserving arbitrary-order proximity

 Incorporate many commonly used proximity measures as special cases

 Experimental results:

 +100% improvements in network reconstruction and link prediction

 Capture the structural roles of node

 Linear scalability

Thanks!
Ziwei Zhang, Tsinghua University

zw-zhang16@mails.tsinghua.edu.cn

https://zw-zhang.github.io/

http://nrl.thumedialab.com/

24

