

### **IEEE ICDM 2018**

# Billion-scale Network Embedding with Iterative Random Projection

Ziwei Zhang Tsinghua U



Peng Cui Tsinghua U



Haoyang Li Tsinghua U



Xiao Wang Tsinghua U



Wenwu Zhu Tsinghua U



# **Network Data is Ubiquitous**



**Social Network** 



**Biology Network** 



**Traffic Network** 

Network Embedding: Vector Representation of Nodes





- Apply feature-based machine learning algorithms
- Fast computing of nodes similarity
- Support parallel computing

■ Applications: link prediction, node classification, community detection, centrality measure, anomaly detection ...

### **Challenge: Billion-scale Network Data**





#### **Social Networks**

- WeChat: 1 billion monthly active users (March, 2018)
- □ Facebook: 2 billion active users (2017)

#### **E-commerce Networks**

□ Amazon: 353 million products, 310 million users, 5 billion orders (2017)

#### **Citation Networks**

■ 130 million authors, 233 million publications, 754 million citations (Aminer, 2018)

How to conduct network embedding for such large-scale network data?

### **Bottleneck of Existing Methods**

- Methods based on random-walks DeepWalk, B. Perozzi, et al. KDD 2014. LINE, J. Tang, et al. WWW 2015. Node2vec, A. Grover, et al. KDD 2016. Methods based on matrix factorization M-NMF, X. Wang, et al. AAAI 2017. AROPE, Z. Zhang, et al. KDD 2018. Methods based on deep learning SDNE, D. Wang, et al. KDD 2016. DVNE, D. Zhu, et al. KDD 2018. □ Common bottleneck: based on sophisticated optimization Computationally expansive Hard to resort to distributed computing scheme Optimization is entangled and needs global information → Communication cost is high
- Only handle thousands or millions of nodes and edges

# **Random Projection**

■ Network embedding: essentially a dimension reduction problem



- Random projection: optimization-free for dimension reduction
  - Basic idea: randomly project data into a low-dimensional subspace
  - Extremely efficient and friendly to distributed computing



# **High-Order Proximity**

■ Key network property: high-order proximity



- □ Can solve the network sparsity problem
- Measure indirect relationship between nodes
- → How to design a high-order proximity preserved random projection?

### **Problem Formulation**

■ Objective function: matrix factorization of preserving high-order proximity

$$\min_{U,V} ||S - UV^T||_p^2$$

$$S = f(A) = \alpha_1 A^1 + \alpha_2 A^2 + \dots + \alpha_q A^q$$

Slight modification: assuming positive semi-definite and using 2 norm

$$\min_{U} ||SS^{T} - UU^{T}||_{2}$$

$$S = f(A) = \alpha_{1}A^{1} + \alpha_{2}A^{2} + \dots + \alpha_{q}A^{q}$$

- Random projection:
  - Denote  $R \in \mathbb{R}^{N \times d}$  as a Gaussian random matrix

$$R_{ij} \sim \mathcal{N}\left(0, \frac{1}{d}\right)$$

■ Surprisingly simple result:

$$U = SR$$

### **Theoretical Guarantee**

■ Theoretical guarantee

**Theorem 1.** For any similarity matrix S, denote its rank as  $r_S$ . Then, for any  $\epsilon \in (0, \frac{1}{2})$ , the following equation holds:

$$P\left[\left\|\mathbf{S}\cdot\mathbf{S}^{T}-\mathbf{U}\cdot\mathbf{U}^{T}\right\|_{2}>\epsilon\left\|\mathbf{S}^{T}\cdot\mathbf{S}\right\|_{2}\right]\leq2r_{\mathbf{S}}e^{-\frac{\left(\epsilon^{2}-\epsilon^{3}\right)d}{4}},$$

where  $\mathbf{U} = \mathbf{S} \cdot \mathbf{R}$  and  $\mathbf{R}$  is a Gaussian random matrix.

- Basically, random projection can effectively minimize the objective function
- However, calculating S is still very time consuming

### **Iterative Projection**

Iterative projection:

$$U = SR = (\alpha_1 A^1 + \alpha_2 A^2 + \dots + \alpha_q A^q)R$$
$$= \alpha_1 A^1 R + \alpha_2 A^2 R + \dots + \alpha_q A^q R$$
$$\times A \times A \times A$$

- Can be calculated iteratively
- Why efficient?
  - $\blacksquare$  A: N × N sparse adjacency matrix
  - $\square$  R: N × d low-dimensional matrix
  - Associative law of matrix multiplication

**Sparse** 

Sparse matrix multiplication! AA ... A A(AR) Low-dimensional Sparse

$$AA \dots A(AAR)$$
 Low-dimensional

# **Iterative Projection**

### Time Consuming!



### RandNE: Iterative Random projection **Network Embedding**

```
Algorithm 1 RandNE: Iterative Random Projection Network
Embedding
Require: Adjacency Matrix A, Dimensionality d, Order q,
     Weights \alpha_0, \alpha_1, ..., \alpha_q
Ensure: Embedding Results U
 1: Generate \mathbf{R} \in \mathbb{R}^{N \times d} \sim \mathcal{N}(0, \frac{1}{d})
 2: Perform a Gram Schmidt process on R to obtain the
     orthogonal projection matrix U_0
 3: for i in 1:q do
        Calculate \mathbf{U}_i = \mathbf{A} \cdot \mathbf{U}_{i-1}
 5: end for
 6: Calculate \mathbf{U} = \alpha_0 \mathbf{U}_0 + \alpha_1 \mathbf{U}_1 + ... + \alpha_q \mathbf{U}_q
```

- Time Complexity:  $O(qMd + Nd^2)$ 
  - N/M: number of nodes/edges; d: dimension; q: order
  - Linear w.r.t. network size
  - Only need to calculate q sparse matrix products
    - Orders of magnitude faster than existing methods!
- Advantages:
  - Distributed Calculation
  - Dynamic Updating

### **Distributed Calculation**

- Iterative random projection only involves matrix product  $U_i = AU_{i-1}$ 
  - Each dimension can be calculated separately
    - Property of sparse matrix product
  - No communication is needed during calculation!



#### **Algorithm 2** Distributed Calculation of RandNE

**Require:** Adjacency matrix A, Initial Projection  $U_0$ , Parameters of RandNE, K Distributed Servers

Ensure: Embedding Results U

- 1: Broadcast A,  $U_0$  and parameters into K servers
- 2: Set i = 1
- 3: repeat
- 4: **if** There is an idle server k **then**
- 5: Calculate U(i,:) in server k
- 6: i = i + 1
- 7: Gather U(i, :) from server k after calculation
- 8: end if
- 9: until i > d
- 10: Return U

# **Dynamic Updating**

- Networks are dynamic in nature
  - E.g., in social networks, users add/delete friends, new users join, old users leave



□ Changes of edges → Calculate incremental parts!

$$U_{i} + \Delta U_{i} = (A + \Delta A) \cdot (U_{i-1} + \Delta U_{i-1})$$

$$\rightarrow \Delta U_{i} = A \cdot \Delta U_{i-1} + \Delta A \cdot U_{i-1} + \Delta A \cdot \Delta U_{i-1}$$

□ Changes of nodes → adjust the dimensionality

### **Dynamic Updating**

#### Algorithm 3 Dynamic Updating of RandNE

**Require:** Adjacency Matrix A, Dynamic Changes  $\Delta A$ , Previous Projection Results  $U_0, U_1, ..., U_q$ 

**Ensure:** Updated Projection Results  $\mathbf{U}_0', \mathbf{U}_1', ..., \mathbf{U}_q'$ 

- 1: if  $\Delta \mathbf{A}$  includes N' new nodes then
- 2: Generate an orthogonal projection  $\hat{\mathbf{U}}_0 \in \mathbb{R}^{N' \times d}$
- 3: Concatenate  $\hat{\mathbf{U}}_0$  with  $\mathbf{U}_0$  to obtain  $\mathbf{U}_0'$
- 4: Add N' all-zero rows in  $\mathbf{U}_1...\mathbf{U}_q$
- 5: end if
- 6: Set  $\Delta \mathbf{U_0} = 0$
- 7: **for** i in 1:q **do**
- 8: Calculate  $\Delta \mathbf{U}_i$  using Eq. (7)
- 9: Calculate  $\mathbf{U}_i' = \mathbf{U}_i + \Delta \mathbf{U}_i$
- 10: end for
- Linear scalability w.r.t. number of changed nodes/edges

**Theorem 3.** The time complexity of dynamic updating is linear with the number of changed nodes and number of changed edges respectively.

- No error accumulation
  - Identical results as re-running the algorithm

### **Experimental Setting: Moderate-scale Networks**

■ Datasets: BlogCatalog, Flickr, YouTube

TABLE I
THE STATISTICS OF DATASETS

| Dataset     | # Nodes   | # Edges    | # Labels |
|-------------|-----------|------------|----------|
| BlogCatalog | 10,312    | 667,966    | 39       |
| Flickr      | 80,513    | 11,799,764 | 47       |
| Youtube     | 1,138,499 | 5,980,886  | 195      |

#### ■ Baselines:

- □ DeepWalk (KDD 2014): DFS random walk + skip-gram
- □ LINE (WWW 2015): BFS random walk + skip-gram
- □ Node2vec (KDD 2016): biased random walk + skip-gram
- □ SDNE (KDD 2016): deep auto-encoder

### ■ Running time



At least dozens of times faster

#### ■ Node Classification



- Parameter analysis:
  - Effectiveness of preserving high-order proximity



<4 minutes for network with 1 million nodes, 100 million edges with one PC</p>

# **Experiments on a Billion-scale Network**

- Experimental results on WeChat
  - □ 250 millions nodes, 4.8 billion edges
  - Network Reconstruction

| Method           | AUC   |
|------------------|-------|
| RandNE           | 0.989 |
| Common Neighbors | 0.783 |
| Adamic Adar      | 0.783 |
| Random           | 0.500 |

Dynamic link prediction

Table 3: AUC scores of dynamic link prediction on WeChat.

| Observed Edges   | 30%   | 40%   | 50%   | 60%   | 70%   |
|------------------|-------|-------|-------|-------|-------|
| RandNE-D         | 0.646 | 0.689 | 0.726 | 0.756 | 0.780 |
| RandNE-R         | 0.646 | 0.689 | 0.726 | 0.756 | 0.780 |
| Common Neighbors | 0.575 | 0.611 | 0.647 | 0.681 | 0.712 |
| Adamic Adar      | 0.575 | 0.611 | 0.647 | 0.681 | 0.712 |
| Random           | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 |

Better results and no error accumulation!

■ Running time and acceleration ratio

Table 4: The running time of our method via distributed computing.

| Number of Computing Nodes | 4     | 8     | 12    | 16    |
|---------------------------|-------|-------|-------|-------|
| Running Time(s)           | 82157 | 46029 | 33965 | 24757 |

<7 hours!

■ Practical running time for real billion-scale networks



Support distributed computing

### **Conclusion**

| Rar | RandNE: a billion-scale network embedding method                        |  |  |  |
|-----|-------------------------------------------------------------------------|--|--|--|
|     | Based on iterative random projection to preserve high-order proximities |  |  |  |
|     | Much more computationally efficient                                     |  |  |  |
|     | Distributed algorithm                                                   |  |  |  |
|     | Handle dynamic networks                                                 |  |  |  |
| Exp | perimental results on moderate-scale networks                           |  |  |  |
|     | At least one order of magnitude faster                                  |  |  |  |
|     | Better or comparable performance                                        |  |  |  |
|     | Linear scalability                                                      |  |  |  |
| Exp | periments on WeChat, a real billion-scale network                       |  |  |  |
|     | Better results in network reconstruction and link prediction            |  |  |  |
|     | No error accumulation                                                   |  |  |  |
|     | Linear acceleration ratio                                               |  |  |  |



# Thanks!

Ziwei Zhang, Tsinghua University

zw-zhang16@mails.tsinghua.edu.cn

http://zw-zhang.github.io/

http://nrl.thumedialab.com/





