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Graph Embedding
 Graph Embedding:

Input graph/network =  Low dimensional space
[0 Advantages:

0 Fast computation of nodes similarity

O Utilization of vector-based machine learning techniques

O Facilitating parallel computing



Existing graph embedding methods

O Existing work:
O LINE(Tang J, et al. WWW 2015): explicitly preserves first-

order and second-order proximity

0 DeepWalk(Perozzi B, et al. KDD 2014): random walk on
graphs + SkipGram Model from NLP

0 GraRep(Cao S, et al. CIKM 2015)

0 SDNE(Daixin W, et al. KDD 2016)

[0 Most methods focus on undirected graph



Directed Graph

Critical property in directed graph: Asymmetric Transitivity
O Transitivity is Asymmetric in directed graph:

O Key in graph inference.
[0 Data Validation: Tencent Weibo and Twitter

O Asymmetric transitivity is important!



Asymmetric Transitivity — Graph Embedding

[ Challenge: incorporate asymmetric transitivity in graph embedding

O Problem: metric space is symmetric

asymmetric transitivity metric space
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Asymmetric Transitivity — Graph Embedding

1 Directed graph embedding: use two vectors to represent each node
O LINE(Tang J, et al. WWW 2015): second-order proximity is directed
O PPE(Song H H, et al. SIGCOMM 2009): using sub-block of the
proximity matrix

Source(U) Target(V)

O Asymmetric: YES; Transitive: NO!



Similarity metric with asymmetric transitivity

O Asymmetric transitivity:
0 Asymmetry: not symmetric in directed graph
O Transitivity:
0 More directed paths, larger similarity

[ Shorter paths, larger similarity
O Compare A -> C similarity:

> @—0—0 >

High-order Proximity!
(E.g. Katz, Rooted PageRank)



High-Order Proximity

0 Solution: directly model transitivity using high-order proximity
O Example: Katz Index

O A: adjacency matrix, 3: decaying constant

SKatZ — Z(IB . A)l
[=1

O Example: when f =1




Preserve high-order proximity embedding

+00
Naive Solution: SVD? gkatz — Z(,B - A)!
=1

SKatz Us X Ut

[ Time and space complexity: 0(N3), N: node number



High-Order Proximity: a general form

O Katz Index:
SK0tZ = $IRB- A = U =BT (B A)
[0 General Form
-1
M, M,
where Mg, M; are polynomial of adjacency matrix or its variants

General Formulation for High-Order Proximity measurements

Proximity Measurement M, M,
Katz I-3-A g A
Personalized Pagerank I—-aP | (1—a)- 1
Common neighbors | A~
Adamic-Adar I A-D-A




The Power of General Form
{ERHS — Ug - U{ |7
S = Mg_l . Ml

Generalized SVD (Singular Value Decomposition) theorem




The Power of General Form
min||§ — U - U |I7
S=M;" M,
O Generalized SVD: decompose S without actually calculating it

[0 IDGSVD: Time Complexity
O(K?L - m)

Embedding Dimension Iteration Edge number
(constant) (constant)

0 Linear complexity w.r.t. the volume of data (i.e. edge number)

--> Scalable algorithm, suitable for large-scale data



Theoretical Guarantee

O Approximation Error Upper Bound:

THEOREM 2. Guwen the prozimity matriz, S, of a directed
graph, and the embedding vectors, U® and U", learned by
HOPPE. Then the approximation error is

N
IS-U"-U'p= > o}
i=K+1

, and the relative approrimation error is:
N 5
IS-U" - U'|% _ D skt o7
2 o N _
IS]|z 2 it 0F

where {o;} are the singular values of S in descend order.

(22)




HOPE: HIGH-ORDER PROXIMITY
PRESERVED EMBEDDING

HOPE: High-Order Proximity preserved Embedding

Algorithm framework:

Algorithm 1 High-order Proximity preserved Embedding

Require: adjacency matrix A, embedding dimension K,
parameters of high-order proximity measurementé.
Ensure: embedding source vectors U® and target vectors

U’
1: calculate M, and M;.
2: perform JDGSVD with M, and M;, and obtain the gen-

eralized singular values {0'51, e UFK} and {07, -, 0%},
and the corresponding singular vectors, {vy,---,Vg}
and {vi, -, vk}

3: calculate singular values {oi,---,0x} according to

Equation (21).
4: calculate embedding matrices U® and U" according to

Equation (19) and (20).




Experiment Setting: Datasets

Datasets:

O Synthetic (Syn): generate using Forest Fire Model
0 Coral: citation network of academic papers

O SN-Twitter?: Twitter Social Network

O SN-TWeibo3: Tencent Weibo Social Network

Statistics of datasets. |V| denotes the num-
ber of vertexes and |E| denotes the number of edges.

Syn Cora | SN-Twitter | SN-TWeibo
'V| | 10,000 | 23166 465,017 1,944,589
E| [ 144,555 | 91500 834,797 50,655,143

thttp://konect.uni-koblenz.de/networks/subelj_cora
http://konect.uni-koblenz.de/networks/munmun_twitter_social
3http://www.kddcup2012.org/c/kddcup2012-trackl/data



Experiment Setting: Task

0 Approximation accuracy
O High-order proximity approximation: how well can
embedded vectors approximate high-order proximity
[0 Reconstruction
O Graph Reconstruction: how well can embedded vectors
reconstruct training sets
O Inference:
O Link Prediction: how well can embedded vectors predict
missing edges
O Vertex Recommendation: how well can embedded vectors

recommend vertices for each node



Experiment Setting: Baseline

0 Graph embedding
0 PPE: approximate high-order proximity by selecting
landmarks and using sub-block of the proximity matrix
O LINE: preserves first-order and second-order proximity,
called LINE1 and LINE2 respectively
0 DeepWalk: random walk on graphs + SkipGram Model

[ Task Specific:
0 Common Neighbors: used for link prediction and vertex
recommendation task
0 Adamic-Adar: used for link prediction and vertex

recommendation task



Experiment result:
high-order Proximity Approximation
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Conclusion: HOPE achieves much smaller RMSE error
-> generalized SVD achieves a good approximation



Experiment result: Graph Reconstruction
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Conclusion: HOPE successfully capture the information of training sets



Experiment result: Link Prediction
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Conclusion: HOPE has good inference ability

-> based on asymmetric transitivity



Experiment result: Vertex Recommendation

+81% improvement

™

+88% improvement

SN-TWebio SNN[witter

Method MADQE N‘ 50| MAP@I00
HOPE 0.1869 . 0.0766
PPE 0.0928 0.0845 0.077 0.0061 0.0077 0.0081
LINE1 0 0 0.005 0.0209 0.0221 0.0221
LINE2 0.051 0.051 0.048 0.0044 0.0043 0.0035

DeepWalk 0.0635 0.0583 0.004 0.0006 0.0008 0.001

Common Neighbors 0.1217 0.1031 0.155 0.0394 0.0379 0.0369
Adamic-Adar 0.1173 0.0990 0.156 0.0455 0.0442 0.0423

Conclusion: HOPE significantly outperforms all state-of-

the-art baselines on all these experiments




Conclusion

O Directed graph embedding:
O High-order Proximity — Asymmetric Transitivity
O Derivation of a general form for high-order proximities,
and solution with generalized SVD
O Covering multiple commonly used high order proximity
O Time complexity linear w.r.t. graph size
O Theoretically guaranteed accuracy.
O Extensive experiments on several datasets
O Outperforming all baselines in various applications.
O x4/x10 smaller approximation error for Katz
O +50% improvement in reconstruction and inference



Thanks!



